Skip to main content
Log in

Site-Directed Mutagenesis of Cytochrome b5 for Studies of Its Interaction with Cytochrome P450

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

We have shown earlier that microsomal cytochrome b 5 can form a specific complex with mitochondrial cytochrome P450 (cytochrome P450scc). The formation of the complex between these two heme proteins was proved spectrophotometrically, by affinity chromatography on immobilized cytochrome b 5, and by measuring the cholesterol side-chain cleavage activity of cytochrome P450scc in a reconstituted system in the presence of cytochrome b 5. To further study the mechanism of interaction of these heme proteins and evaluate the role of negatively charged amino acid residues Glu42, Glu48, and Asp65 of cytochrome b 5, which are located at the site responsible for interaction with electron transfer partners, we used sitedirected mutagenesis to replace residues Glu42 and Glu48 with lysine and residue Asp65 with alanine. The resulting mutant forms of cytochrome b 5 were expressed in E. coli, and full-length and truncated forms (shortened from the C-terminal sequence due to cleavage of 40 amino acid residues) of these cytochrome b 5 mutants were purified. Addition of the truncated forms of cytochrome b 5 (which do not contain the hydrophobic C-terminal sequence responsible for interaction with the membrane) to the reconstituted system containing cytochrome P450scc caused practically no stimulation of catalytic activity, indicating an important role of the hydrophobic fragment of cytochrome b 5 in its interaction with cytochrome P450scc. However, full-length cytochrome b 5 and the full-length Glu48Lys and Asp65Ala mutant forms of cytochrome b 5 stimulated the cholesterol side-chain cleavage reaction catalyzed by cytochrome P450scc by 100%, suggesting that residues Glu48 and Asp65 of cytochrome b 5 are not directly involved in its interaction with cytochrome P450scc. The replacement of Glu42 for lysine, however, made the Glu42Lys mutant form of cytochrome b 5 about 40% less effective in stimulation of the cholesterol side-chain cleavage activity of cytochrome P450scc, indicating that residue Glu42 of cytochrome b 5 is involved in electrostatic interactions with cytochrome P450scc. Residues Glu42 and Glu48 of cytochrome b 5 appear to participate in electrostatic interaction with microsomal type cytochrome P450.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Ozols, J. (1976) Ann. Clin. Res., 8, 182–192.

    Google Scholar 

  2. Vergeres, G., and Waskell, L. (1995) Biochimie, 77, 604–620.

    Google Scholar 

  3. Napier, J. A., Sayanova, O., Stobart, A. K., and Shewry, P. R. (1997) Biochem. J., 328, 717–718.

    Google Scholar 

  4. Abe, K., and Sugita, Y. (1979) Eur. J. Biochem., 101, 423–428.

    Google Scholar 

  5. Takematsu, H., Kawano, T., Koyama, S., Kozutsumi, Y., Suzuki, A., and Kawasaki, A. (1994) J. Biochem., 115, 381–386.

    Google Scholar 

  6. Juvonen, R. O., Iwasaki, M., and Negishi, M. (1992) Biochemistry, 31, 11519–11523.

    Google Scholar 

  7. Yamazaki, H., Nakano, M., Imai, Y., Ueng, Y. F., Guengerich, F. P., and Shimada, T. (1996) Arch. Biochem. Biophys., 325, 174–182.

    Google Scholar 

  8. Perret, A., and Pompon, D. (1998) Biochemistry, 37, 11412–11424.

    Google Scholar 

  9. Durham, B., Fairris, J. L., McLean, M., Millett, F., Scott, J. R., Sligar, S. G., and Willie, A. (1995) J. Bioenerg. Biomembr., 27, 331–340.

    Google Scholar 

  10. Mauk, A. G., Mauk, M. R., Moore, G. R., and Northrup, S. H. (1995) J. Bioenerg. Biomembr., 27, 311–330.

    Google Scholar 

  11. Nishida, H., and Miki, K. (1996) Proteins, 26, 32–41.

    Google Scholar 

  12. Shirabe, K., Nagai, T., Yubisui, T., and Takeshita, M. (1998) Biochim. Biophys. Acta, 1384, 16–22.

    Google Scholar 

  13. Enoch, H. G., and Strittmatter, A. (1979) J. Biol. Chem., 254, 8976–8981.

    Google Scholar 

  14. Nisimoto, Y., and Otsuka-Murakami, H. (1988) Biochemistry, 27, 5869–5876.

    Google Scholar 

  15. Tamburini, P. P., Mac Fargubar, S., and Schenkman, J. B. (1986) Biochem. Biophys. Res. Commun., 134, 519–526.

    Google Scholar 

  16. Chiang, J. Y. (1981) Arch. Biochem. Biophys., 211, 662–673.

    Google Scholar 

  17. Miki, N., Sugiyama, T., and Yamano, T. (1980) J. Biochem. (Tokyo), 88, 307–310.

    Google Scholar 

  18. Usanov, S. A., Bendzko, P., Janig, G., and Ruckpaul, K. (1983) Bioorg. Khim., 9, 450–461.

    Google Scholar 

  19. Bendzko, P., Usanov, S. A., Pfeil, W., Janig, G., and Ruckpaul, K. (1982) Acta. Biol. Med. Germ., 41, K1-K8.

    Google Scholar 

  20. Omata, Y., Sakamoto, H., Robinson, R. C., Pinkus, M. R., and Friedman, F. K. (1994) FEBS Lett., 346, 241–245.

    Google Scholar 

  21. Honkakoski, P., Linnala-Kankkunen, A., Usanov, S. A., and Lang, M. A. (1992) Biochim. Biophys. Acta, 1122, 6–14.

    Google Scholar 

  22. Usanov, S. A., and Chashchin, V. L. (1991) FEBS Lett., 278, 279–282.

    Google Scholar 

  23. Usanov, S. A., Chashchin, V. L., and Akhrem, A. A. (1989) Biochemistry (Moscow), 54, 472–486.

    Google Scholar 

  24. Stayton, P. S., Poulos, T. L., and Sligar, S. G. (1989) Biochemistry, 28, 8201–8205.

    Google Scholar 

  25. Kominami, S., Ogawa, N., Morimune, R., De-Ying, H., and Takemori, S. (1992) J. Steroid Biochem. Mol. Biol., 42, 57–64.

    Google Scholar 

  26. Katagir, M., Kagawa, N., and Waterman, M. R. (1995) Arch. Biochem. Biophys., 317, 343–347.

    Google Scholar 

  27. Salemme, F. R. (1976) J. Mol. Biol., 102, 563–568.

    Google Scholar 

  28. Rodgers, K. K., Pochapsky, T. C., and Sligar, S. G. (1988) Science, 240, 1657–1659.

    Google Scholar 

  29. Kawano, M., Shirabe, K., Nagai, T., and Takeshita, M. (1998) Biochem. Biophys. Res. Commun., 245, 666–669.

    Google Scholar 

  30. Sun, Y. L., Xie, Y., Wang, Y. H., Xiao, G. T., and Huang, Z. X. (1996) Protein Eng., 9, 555–558.

    Google Scholar 

  31. Qian, W., Yu-Long, S., Wang, Y., Zhuang, J., Xie, Y., and Huang, Z. (1998) Biochemistry, 37, 14137–14150.

    Google Scholar 

  32. Chudaev, M. V., and Usanov, S. A. (1997) Biochemistry (Moscow), 62, 471–483.

    Google Scholar 

  33. Chudaev, M. V., and Usanov, S. A. (1996) Exp. Toxic. Pathol., 48, 61–66.

    Google Scholar 

  34. Schenkman, J. B., and Jansson, I. (1999) Drug Metab. Rev., 31, 351–364.

    Google Scholar 

  35. Usanov, S. A., Pikuleva, I. A., Chashchin, V. L., and Akhrem, A. A. (1984) Bioorg. Khim., 10, 32–45.

    Google Scholar 

  36. Omura, T., and Sato, R. (1964) J. Biol. Chem., 239, 2370–2378.

    Google Scholar 

  37. Chu, J.-W., and Kimura, T. (1973) J. Biol. Chem., 248, 2089–2094.

    Google Scholar 

  38. Laemmli, U. K. (1970) Nature, 227, 680–685.

    Google Scholar 

  39. Towbin, H., Staehelin, T., and Gordon, J. (1979) Proc. Natl. Acad. Sci. USA, 76, 3116–3120.

    Google Scholar 

  40. Mauk, M. R., Reid, L. S., and Mauk, A. G. (1982) Biochemistry, 21, 1843–1846.

    Google Scholar 

  41. Sugano, S., Morishima, N., Ikeda, H., and Horie, S. (1989) Analyt. Biochem., 182, 327–333.

    Google Scholar 

  42. Barnes, H., Arlotto, M., and Waterman, M. R. (1991) Proc. Natl. Acad. Sci. USA, 88, 5597–5601.

    Google Scholar 

  43. Hoffman, A., and Roeder, R. G. (1991) Nucleic Acids Res., 19, 6337–6338.

    Google Scholar 

  44. Bridges, A., Gruenke, L., Chang, Y. T., Vakser, I. A., Loew, G., and Waskell, L. (1998) J. Biol. Chem., 273, 17036–17049.

    Google Scholar 

  45. Guzov, V. M., Zelko, I. N., Chudaev, M. V., Guzova, J. A., Chung, B.-C., and Usanov, S. A. (1996) Biochemistry (Moscow), 61, 1242–1252 (Russ.).

    Google Scholar 

  46. Yamazaki, H., Johnson, W. W., Ueng, Y. F., Shimada, T., and Guengerich, F. P. (1996) J. Biol. Chem., 271, 27438–27444.

    Google Scholar 

  47. Peyronneau, A., Renaud, J. P., Truan, G., Urban, P., Pompon, D., and Mansuy, D. (1992) Eur. J. Biochem., 207, 109–116.

    Google Scholar 

  48. Voice, M. W., Zhang, Y., Wolf, C. R., Burchell, B., and Friedberg, T. (1999) Arch. Biochem. Biophys., 366, 116–124.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chudaev, M.V., Gilep, A.A. & Usanov, S.A. Site-Directed Mutagenesis of Cytochrome b5 for Studies of Its Interaction with Cytochrome P450. Biochemistry (Moscow) 66, 667–681 (2001). https://doi.org/10.1023/A:1010215516226

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010215516226

Navigation