Skip to main content
Log in

Cancer Development and Progression: A Non-Adaptive Process Driven by Genetic Drift

  • Published:
Acta Biotheoretica Aims and scope Submit manuscript

Abstract

The current mainstream in cancer research favours the idea that malignant tumour initiation is the result of a genetic mutation. Tumour development and progression is then explained as a sort of micro-evolutionary process, whereby an initial genetic alteration leads to abnormal proliferation of a single cell that leads to a population of clonally derived cells. It is widely claimed that tumour progression is driven by natural selection, based on the assumption that the initial tumour cells acquire some properties that endow such cells with a selective advantage over the normal cells from which the tumour cells are derived. The standard view assumes that the transformed bodily cell somehow acquires "responsiveness" to natural selection independently of the whole organism to which the cell belongs. Yet, it is never explained where such an acquired capacity to respond to natural selection by the individual bodily cell comes from. This situation poses many difficult questions that so far have been left unanswered. For example, there is no explanation why some cells belonging to an organised whole and as such having no independent capacity for survival, apparently become 'independent' entities, able to respond to selective pressures in an autonomous fashion and then to be evaluated by natural selection. Hereunder it is argued that such a qualitative change cannot be the consequence of specific genetic mutations. Moreover, it is shown that natural selection is unlikely to be acting within the organism during tumour development and progression and that tumour evolution is a random, non-adaptive process, driven by no fundamental biological principle. Thus, mutations in the so-called oncogenes and tumour suppressor genes observed in epithelial cancers (that constitute more than 90% of all cancers) are not the result of selection for better cellular growth or survival under restrictive conditions. Instead, here it is suggested that they are the consequence of genetic drift acting upon gene functions that become non-relevant, either for the individual or the species fitness, once the organism is past its reproductive prime and as such, they also become superfluous for cell survival in the short term. It is proposed that the origin of cancer is epigenetic and it is a consequence of the need for a continued turnover of the individuals that constitute a species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Alberts, B., D. Bray, J. Lewis, M. Raff, K. Roberts and J.D. Watson (1989). Molecular Biology of the Cell, 2nd ed., pp. 1187-1203. Garland, New York.

    Google Scholar 

  • Alberts, B., D. Bray, J. Lewis, M. Raff, K. Roberts and J.D. Watson (1994). Molecular Biology of The Cell, 3rd ed., pp. 1255-1294. Garland, New York.

    Google Scholar 

  • Alizadeh, A.A., M.B. Eisen, R.E. Davis, C. Ma, I.S. Lossos, A. Rosenwald, J.C. Boldrick, H. Sabet, T. Tran, X. Yu, J.I. Powell, L. Yang, G.E. Marti, T. Moore, J. Hudson, L. Lu, D.B. Lewis, R. Tibshirani, G. Sherlock, W.C. Chan, T.C. Greiner, D.D. Weisenburger, J.O. Armitage, R. Warnke, R. Levy, W. Wilson, M.R. Grever, J.C. Byrd, D. Botstein, P.O. Brown and L.M. Staudt (2000). Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403: 503-511.

    Google Scholar 

  • American Cancer Society (2000). Cancer Facts and Figures, pp.1-7. American Cancer Society, Atlanta.

    Google Scholar 

  • Aranda-Anzaldo, A. (1989). On the role of chromatin higher-order structure and mechanical interactions in the regulation of gene expression. Speculations in Science and Technology 12: 163-176.

    Google Scholar 

  • Aranda-Anzaldo, A. (1990). Higher-order structure in the cell nucleus and embryonic development. Speculations in Science and Technology 13: 53-59.

    Google Scholar 

  • Aranda-Anzaldo, A. (1993). A role for the nucleotype in the pathogenesis of primary hepatocellular carcinoma. Medical Hypotheses 40: 207-210.

    Google Scholar 

  • Aranda-Anzaldo, A. (1997). The gene as the unit of selection: a case of evolutive delusion. Ludus Vitalis V(9): 91-120.

    Google Scholar 

  • Aranda-Anzaldo, A., F. Orozco-Velasco, E. García-Villa and P. Gariglio (1999). p53 is a rate-limiting factor in the repair of higher-order DNA structure. Biochimica et Biophysica Acta 1446(3): 181-192.

    Google Scholar 

  • Armstrong, J., M.H. Kaufman, D.J. Harrison and A.R. Clarke (1995). High frequency developmental abnormalities in p53-deficient mice. Current Biology 5: 931-936.

    Google Scholar 

  • Artandi, S.E., S. Chang, S-L. Lee, S. Alson, G.J. Gottlieb and R.A. DePinho (2000). Telomere dysfunction promotes non-reciprocal translocations and epithelial cancers in mice. Nature 406: 641-645.

    Google Scholar 

  • Bialy, H. (1998). Aneuploidy and cancer: vintage wine in a new bottle? Nature Biotechnology 16: 137-138.

    Google Scholar 

  • Bishop J.M. (1991). Molecular themes in oncogenesis. Cell 64: 235-248.

    Google Scholar 

  • Blasco, M.A., H-W. Lee, P.M. Hande, E. Samper, P.M. Lansdorp, R.A. DePinho and C.W. Greider (1997). Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. Cell 91: 25-34.

    Google Scholar 

  • Boveri, T. (1914). Zur Frage der Enstehung Maligner Tumoren. Gustav Fischer Verlag, Jena.

    Google Scholar 

  • Brandon, R.N. (1999). The units of selection revisited: the modules of selection. Biology and Philosophy 14: 167-180.

    Google Scholar 

  • Burnet, F.M. (1957). Cancer: a biological approach. British Medical Journal 1: 779-786; 841–847.

    Google Scholar 

  • Burnet, F.M. (1974). Intrinsic Mutagenesis: a genetic approach to ageing. MTP Ltd, Lancaster.

    Google Scholar 

  • Cahill, D.P., C. Lengauer, J. Yu, G.J. Riggins, J.K.V. Willson, S.D. Markowitz, K.W. Kinzler and B. Vogelstein (1998). Mutations of mitotic checkpoint genes in human cancers. Nature 392: 300-303.

    Google Scholar 

  • Cairns, J. (1975). Mutation selection and the natural history of cancer. Nature 255: 197-200.

    Google Scholar 

  • Callebaut, W. (1995). The future of naturalistic philosophy of science. Ludus Vitalis III(5): 19-52.

    Google Scholar 

  • Charlesworth, B. (1994). How does increased fitness evolve? Current Biology 4: 1146-1148.

    Google Scholar 

  • Charlesworth, B. (1996). Evolution of senescence: Alzheimer's disease and evolution. Current Biology 6: 20-22.

    Google Scholar 

  • Clurman, B. and M. Groudine (1997). Killer in search of a motive? Nature 389: 122-123.

    Google Scholar 

  • Cooper, G.M. (1997). The Cell: a molecular approach, pp 599-608. Sinauer-ASM Press, Sunderland, Mass.

    Google Scholar 

  • Curtis, H. and C. Crowley (1963). Chromosome aberrations in liver cells in relation to the somatic mutation theory of ageing. Radiation Research 19: 337-344.

    Google Scholar 

  • Davidov, M. (1999). Genetic stability: the key to longevity? Medical Hypotheses 53: 329-332.

    Google Scholar 

  • de Lange, T. (1992). Human telomeres are attached to the nuclear matrix. EMBO Journal 11: 717-724.

    Google Scholar 

  • de Lange, T. (1998). Telomeres and senescence: ending the debate. Science 279: 334-335.

    Google Scholar 

  • Doll, R. and R. Peto (1987). Epidemiology of cancer. In: D.J. Weatherall, J.G.G. Ledingham and D.A. Warrell (eds.), Oxford Textbook of Medicine, 2nd ed., pp. 4.95-4.123. Oxford University Press, Oxford.

    Google Scholar 

  • Drake, J.W. (1969). Comparative rates of spontaneous mutation. Nature 221: 1132.

    Google Scholar 

  • Duesberg, P.H. (1987). Retroviruses as carcinogens and pathogens: expectations and reality. Cancer Research 47: 1199-1206.

    Google Scholar 

  • Duesberg, P.H. (1995). Oncogenes and Cancer. Science 267: 407-408.

    Google Scholar 

  • Fearon, E.R. and B. Vogelstein (1990). A genetic model for colorectal tumorigenesis. Cell 61: 759-767.

    Google Scholar 

  • Fearon, E.R. (1999). Cancer progression. Current Biology 9: R873-R875.

    Google Scholar 

  • Feltz, B. (1992). Auto-organisation, développement et théories de l'evolution. Uroboros II(1): 105-126.

    Google Scholar 

  • Franks, L.M. (1991). What is cancer?. In: L.M. Franks and N.M. Teich (eds.), Introduction to the cellular and molecular biology of cancer, 2nd ed., pp. 7-9. Oxford University Press, Oxford.

    Google Scholar 

  • Frei, E. (1993). Pathobiology of cancer. In: E. Rubinstein and D.D. Federman (eds.), Scientific American Medicine, 12(III): 18-20. Scientific American, New York.

    Google Scholar 

  • Friedberg, E.C. (1985). DNA Repair. p 8. W.H. Freeman, San Francisco.

    Google Scholar 

  • Goldrath, A.W. and M.J. Bevan (1999). Selecting and maintaining a diverse T-cell repertoire. Nature 402: 255-262.

    Google Scholar 

  • Hahn, W.C., C.M. Counter, A.S. Lundberg, R.L. Beijersbergen, M.W. Brooks and R.A. Weinberg (1999). Creation of human tumour cells with defined genetic elements. Nature 399: 464-468.

    Google Scholar 

  • Hall, P.A. and D.P. Lane (1997). Tumour suppressors: a developing role for p53? Current Biology 7: R144-R174.

    Google Scholar 

  • Hamilton, W.D. (1966). The moulding of senescence by natural selection. Journal of Theoretical Biology 12: 12-45.

    Google Scholar 

  • Harley, C., A. Futcher and C. Greider (1990). Telomeres shorten during ageing of human fibroblasts. Nature 345: 458-460.

    Google Scholar 

  • Hayflick, L. (2000). The future of ageing. Nature 408: 267-269.

    Google Scholar 

  • Hollstein, M., D. Sidranski, B. Vogelstein and C.C. Harris (1991). p53 mutations in human cancers. Science 253: 49-53.

    Google Scholar 

  • Hua, V.Y., W.K. Wang and P.H. Duesberg (1997). Dominant transformation by mutated ras genes in vitro requires more than 100 times higher expression than is observed in cancers. Proceedings of the National Academy of Sciences USA 94: 9614-9619.

    Google Scholar 

  • Ilyas, M., J. Straub, I.P. Tomlinson and W.F. Bodmer (1999). Genetic pathways in colorectal and other cancers. European Journal of Cancer 35: 335-351.

    Google Scholar 

  • Janeway, C.A. and P. Travers (1994). Immunobiology; the immune system in health and disease, Ch. 11: 36-45. Current Biology Ltd, London/Garland Publishing Inc., New York/Blackwell Scientific Publications, Oxford.

    Google Scholar 

  • Jen, J., S.M. Powell, N. Papadopoulos, K.J. Smith, S.R. Hamilton, B. Vogelstein and K.W. Kinzler (1994). Molecular determinants of dysplasia in colorectal lesions. Cancer Research 54: 5523-5526.

    Google Scholar 

  • Kinzler, K.W. and B. Vogelstein (1997). Gatekeepers and caretakers. Nature 386: 761-763.

    Google Scholar 

  • Land, H., L.F. Parada and R.A. Weinberg (1983). Cellular oncogenes and multistep carcinogenesis. Science 222: 771-778.

    Google Scholar 

  • Lane, D.P. (1992). Worrying about p53. Current Biology 2: 581-583.

    Google Scholar 

  • Lengauer, C., K.W. Kinzler and B. Vogelstein (1997). Genetic instability in colorectal cancers. Nature 386: 616-620

    Google Scholar 

  • Lewin, B. (2000). Genes VII. Oxford, Oxford University Press.

    Google Scholar 

  • Li, R., G. Yerganian, P. Duesberg, A. Kraemer, A. Willer, C. Rausch and R. Hehelmann (1997). Aneuploidy correlated 100% with chemical transformation of Chinese hamster cells. Proceedings of the National Academy of Sciences USA 94: 14506-14511.

    Google Scholar 

  • Li, R., A. Sonik, R. Stindl, D. Rasnick and P. Duesberg (2000). Aneuploidy vs. gene mutation hypothesis of cancer: recent study claims mutation but is found to support aneuploidy. Proceedings of the National Academy of Sciences USA 97: 3236-3241.

    Google Scholar 

  • Loeb, L.A. (1991). Mutator phenotype may be required for multistage carcinogenesis. Cancer Research 51: 3075-79.

    Google Scholar 

  • Loeb, L.A. (1997). Transient expression of a mutator phenotype in cancer cells. Science 277: 1449-1450.

    Google Scholar 

  • Ly, D. H., D.J. Lockhart, R.A. Lerner and P.G. Schultz. (2000). Mitotic misregulation and human ageing. Science 287: 2486-2492.

    Google Scholar 

  • Marshall, C.J. (1991). Tumor suppressor genes. Cell 64: 313-326.

    Google Scholar 

  • Matsudara, P., A. Berk, S.L. Zipursky, D. Baltimore, J. Darnell and H. Lodish (2000). Molecular Cell Biology 4th ed., p. 1055. W.H. Freeman, New York.

    Google Scholar 

  • Mayr, E. (1988). Toward a New Philosophy of Biology, p. 17. Harvard University Press, Cambridge, Massachusetts.

    Google Scholar 

  • Nathan, D.M. (1993). Diabetes mellitus. In: E. Rubinstein and D.D. Federman (eds.), Scientific American Medicine, 9(VI): 1-27. Scientific American, New York.

    Google Scholar 

  • Nowell, P.C. (1976). The clonal evolution of tumor cell populations. Science 194: 23-28.

    Google Scholar 

  • Pennisi, E. (1997). New tumor suppressor found twice. Science 275: 1876-1878.

    Google Scholar 

  • Perou, C.M., T. Sorlie, M.B. Eisen, M. van de Rijn, S.S. Jeffrey, C.A. Rees, J.R. Pollack, D.T. Ross, H. Johnsen, L.A. Akslen, O. Fluge, A. Pergamenschikov, C. Williams, S.X. Zhu, P.E. Lonning, A.-L. Borresen-Dale, P.O. Brown and D. Botstein (2000). Molecular portraits of human breast tumours. Nature 406: 747-752.

    Google Scholar 

  • Pienta, K.J. and D.S. Coffey (1991). Cellular harmonic information transfer through a tissue tensegrity-matrix system. Medical Hypotheses 34: 88-95.

    Google Scholar 

  • Rasnick D. and P. Duesberg (1999). How aneuploidy affects metabolic control and causes cancer. Biochemical Journal 340: 621-630.

    Google Scholar 

  • Razin, S.V., I.I. Gromova and O.V. Iarovaia (1995). Specificity and functional significance of DNA interaction with the nuclear matrix: new approaches to clarify old questions. International Review of Cytology 162B: 405-49.

    Google Scholar 

  • Richards, B., H. Zhang, G. Phera and M. Meuth (1997). Conditional mutator phenotypes in hMSH2-deficient tumor cell lines. Science 277: 1523-1526.

    Google Scholar 

  • Risch, N., E.W. Reich, M.M. Wishnick and J.G. McCarthy (1987). Spontaneous mutation and parental age in humans. American Journal of Human Genetics 41: 218-248.

    Google Scholar 

  • Robbins, S.L., R.S. Cotran and V. Kumar (1989). Pathological Basis of Disease, 4th edn, pp.239-305. WB Saunders, Philadelphia.

    Google Scholar 

  • Routtenberg, A. (1995). Knockout mouse fault lines. Nature 374: 315.

    Google Scholar 

  • Ruddon, R.H. (1981). Cancer Biology. Oxford University Press, Oxford.

    Google Scholar 

  • Sniegowski, P.D., P.J. Gerrish and R.E. Lenski (1997). Evolution of high mutation rates in experimental populations of E. coli. Nature 387: 700-702.

    Google Scholar 

  • Sober, E. (1984). The Nature of Selection. MIT Press, Boston.

    Google Scholar 

  • Srivastava, S, Y. Tong, K. Devadas, Z. Zou, V. Sykes, Y. Chen, W. Blattner, K. Pirrollo and E. Chang (1992). Detection of both mutant and wild-type p53 proteins in normal skin fibroblasts and demostration of a shared ‘second hit’ on p53 in diverse tumors from a cancer-prone family with Li-Fraumeni syndrome. Oncogene 7: 987-991.

    Google Scholar 

  • Tomlinson, I. and W. Bodmer (1999). Selection, the mutation rate and cancer: ensuring that the tail does not wag the dog. Nature Medicine 5: 11-12.

    Google Scholar 

  • Visser, A.E., F. Jaunin, S. Fakan and J.A. Aten (2000). High resolution analysis of interphase chromosme domains. Journal of Cell Science 113: 2585-2593.

    Google Scholar 

  • Vogelstein, B. and K. Kinzler (1996). Lessons from hereditary colorectal cancer. Cell 87: 159-170.

    Google Scholar 

  • Waddington, C.H. (1968). The theory of evolution today. In: A. Koestler and J.R. Smythies (eds.), Beyond Reductionism, pp. 357-395. Hutchinson, London.

    Google Scholar 

  • Watson, J.D., M. Gilman, J. Witkowski and M. Zoller (1992). Recombinant DNA, 2nd ed, p.336, Freeman-Scientific American Books, New York.

    Google Scholar 

  • Weinberg, R.A. (1993). Molecular mechanisms of carcinogenesis. In: E. Rubinstein and D.D. Federman (eds.), Scientific American Medicine, 12(II): 1-14. Scientific American, New York.

    Google Scholar 

  • Weisbuch, G. (1989). Dynamique des systemes complexes. InterEditions/Editions de CNRS, Paris.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aranda-Anzaldo, A. Cancer Development and Progression: A Non-Adaptive Process Driven by Genetic Drift. Acta Biotheor 49, 89–108 (2001). https://doi.org/10.1023/A:1010215424196

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010215424196

Navigation