Skip to main content

Thermal Analysis of Some Environmentally Degradable Polymers

Abstract

The thermal characteristics of a series of degradable polymers have been investigated using thermogravimetry and differential scanning calorimetry. While the results of the thermogravimetry experiments suggest that the thermal stability of the polymers should not pose any problems at the temperatures that can be expected in a commercial composting process (60°C), phase changes associated with some of the polymers investigated may cause problems in the interpretation of data from composting degradation studies. Several biodegradable polymers were observed to have melt transitions at temperatures similar to those found in a composting environment. Consequently, under the controlled composting conditions used to evaluate biodegradable polymers, degradation of a polymer may be inferred, while actually the polymer has merely undergone a phase change.

This is a preview of subscription content, access via your institution.

References

  1. Anon. Modern Plastics, 7 (1995) 49.

  2. E. D. Amico, Chemical Week (May 15) 33 (1996).

  3. ASTM Report on the ‘Compostability Testing of Degradable Polymeric Materials’ (Nov. 1996).

  4. G. Scott, Dev. Polym. Stab. Chap. 72 (1982) 4.

    Google Scholar 

  5. L. K. Ballinger, Proceeding of the 1st Int. Scientific Consensus on Degradable Materials, S. A. Barenberg ed. 1989, p. 447.

  6. M. Day, K. Shaw, D. Cooney, J. Watts and B. Harrigan, J. Environmental Polymer Degradation (in press).

  7. J. H. Flynn, Polym. Eng. Sci., 20 (1980) 675.

    Article  CAS  Google Scholar 

  8. F. D. Kopinke, M. Remmler, K. Mackenzie, M. Moder and O. Wachsen, Polym. Degradation and Stability, 53 (1996) 329.

    Article  CAS  Google Scholar 

  9. S. J. Huang, M. F. Koenig and M. Huang, in ‘Biodegradable Polymers and Packaging’ (Ed. C. Ching, D. L. Kglum and E. L. Thomas) Technomic, Lancaster PA, Ch. 6, 1993, pp. 97–110.

    Google Scholar 

  10. J. W. Donovan, Biopolymers, 18 (1979) 263.

    Article  CAS  Google Scholar 

  11. A. Sodergard, F.-F. Selin and J. H. Nasman, Polym. Degradation and Stabilization, 51 (1996) 351.

    Article  CAS  Google Scholar 

  12. D. Kemmish, in ‘Biodegradable Polymers and Packaging’ [Ed. C. Ching, D. L. Kaplan and E. L. Thomas] Technomic, Lancaster PA Ch. 15, 1993, pp. 225–232.

    Google Scholar 

  13. P. B. Dave, R. A. Gross and S. P. McCarthy, ANTEC, 90 (1990) 1439.

    Google Scholar 

  14. F.-D. Kopinke, M. Remmler and K. Mackenzie, Polymer Degradation and Stability, 52 (1996) 25.

    Article  CAS  Google Scholar 

  15. M. Avella, B. Immirzi, M. Malinconico, E. Martuscelli and M. G. Vope, Polymer Int., 39 (1996) 191.

    Article  CAS  Google Scholar 

  16. F. Gassner and A. J. Owen, Polymer Int., 39 (1996) 215.

    Article  CAS  Google Scholar 

  17. Y. Doi, Microbial Polyesters VCH Publishers New York 1990, p. 118.

  18. H. Baur and B. Wunderlich, Adv. Polym. Sci., 7 (1970) 15.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Day, M., Cooney, J.D., Shaw, K. et al. Thermal Analysis of Some Environmentally Degradable Polymers. Journal of Thermal Analysis and Calorimetry 52, 261–274 (1998). https://doi.org/10.1023/A:1010195105547

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010195105547

  • degradable plastics
  • polycaprolactone
  • polyesters
  • polyethylene
  • polylactic acid
  • starch polymers
  • thermal stability