Vapor Pressure and Heat of Sublimation of Crystal Polymorphs

  • U. J. Griesser
  • M. Szelagiewicz
  • U. Ch. Hofmeier
  • C. Pitt
  • S. Cianferani


In order to determine the applicability of vapor pressure studies on polymorphic modifications, pairs of enantiotropically related modifications of caffeine, theophylline and carbamazepine were investigated. The studies were performed over a wide temperature range (71 to 191°C) and accordingly over a wide vapor pressure range (0.02 to 400 Pa) using an automatic instrument constructed on the basis of the gas saturation principle. This instrument enables an analytical determination of the main component and the impurities present by the chromatographic separation of the substances transported in the gas flow. Therefore, the real partial pressure of the main component can be measured. Due to the high precision of the applied method it was possible to determine partial pressure curves and the thermodynamic transition temperature — the point at which the vapor pressure of two crystal polymorphs is equal. The thermodynamic transition temperatures of caffeine and theophylline were determined to be 136 and 232°C, respectively. These values are in agreement with experimental or calculated values derived from DSC investigations but are more reliable. Vapor pressure measurements of carbamazepine are only meaningful in the low temperature range due to its decomposition at high temperatures. The thermodynamics, advantages and limits of vapor pressure determinations of polymorphic modifications are discussed.

caffeine carbamazepine crystal forms heat of sublimation polymorphism theophylline transition temperature vapor pressure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Gavezzotti, Acc. Chem. Res., 27 (1994) 309. and Crystallography Reviews, 7 (1998) 5.Google Scholar
  2. 2.
    E. Marti, J. Thermal Anal., 33 (1988) 37.Google Scholar
  3. 3.
    T. L. Threlfall, Analyst, 120 (1995) 2435.Google Scholar
  4. 4.
    E. Marti, A. Geoffroy, O. Heiber and E. Scholl, 5th Int. Conf. on Chemical Thermodynamics (1977), Ronneby, Sweden.Google Scholar
  5. 5.
    H. Bothe and H. K. Cammenga, J. Thermal Anal., 16 (1979) 267.Google Scholar
  6. 6.
    J. S. Chickos, Heats of Sublimation, in: Molecular Structure and Energetics. Vol. 2, Physical measurements, Ed: J. F. Liebman and A. Greenberg, New York VCH. (2):67, 1987.Google Scholar
  7. 7.
    J.-O. Henck, U. J. Griesser und A. Burger, Pharm. Ind., 59 (1997) 165.Google Scholar
  8. 8.
    A. Burger and R. Ramberger, Mikrochim. Acta II, (1979) 259 and 273.Google Scholar
  9. 9.
    L. Yu, J. Pharm. Sci., 84 (1995) 966.Google Scholar
  10. 10.
    Z. Y. Zhang, M. Frenkel, K. N. Marsh and R. C. Wilhoit, Thermodynamic properties of organic compounds and their mixtures, Subvolume A, Enthalpies of fusion and transition of organic compounds, Landolt-Börnstein Group IV: Macroscopic properties of matter, 8 (1995).Google Scholar
  11. 11.
    M. Kuhnert-Brandstätter and I. Moser., Mikrochim. Acta, 2 (1978) 255.Google Scholar
  12. 12.
    J. S. Chickos, R. Annunziata, L. H. Ladon, A. S. Hyman and J. F. Liebman, J. Org. Chem., 51 (1986) 4311.Google Scholar
  13. 13.
    J. S. Chickos, Heat of Sublimation Data in NIST Chemistry WebBook, NIST Standard Reference Database Number 69, Eds. W. G. Mallard and P. J. Linstrom, November 1998, National Institute of Standards and Technology, Gaithersburg MD, 20899 ( Scholar
  14. 14.
    W. Hessler, Wissenschaftliche Zeitschrift der Wilhelm-Pieck-Universität Rostock, Mathematisch-Naturwissenschaftliche Reihe, 25 (1976) 1047; ibid, 26 (1977) 759.Google Scholar
  15. 15.
    OECD Paris, Test Guideline, 104 (1995) 1.Google Scholar
  16. 16.
    C. G. De Kruif, J. Chem. Thermodynamics, 12 (1980) 243.Google Scholar
  17. 17.
    K. Nass, D. Lenoir and A. Kettrup, Angew. Chem. Int. Ed. Engl., 34 (1995) 1735.Google Scholar
  18. 18.
    C. G. De Kruif, NATO ASI Ser., Ser. C (1984), 119 (Thermochemistry and its Application to Chemical and Biochemical Systems), p. 143.Google Scholar
  19. 19.
    E. Marti, A. Geoffroy, B. F. Rordorf and M. Szelagiewicz, Proc. Int. Cont. Thermal Anal., 1 (1980) 305.Google Scholar
  20. 20.
    B. F. Rordorf, Chemosphere, 14 (1985) 885.Google Scholar
  21. 21.
    K. Bayreuther, G. Bräuer, M. Farker, K. Naß and K. H. Schmidt, Labor Praxis, Physikalische Chemie, April, 1994.Google Scholar
  22. 22.
    J. S. Chickos, D. G. Hesse and J. F. Liebman, Structural Chemistry, 4 (1993) 261.Google Scholar
  23. 23.
    W. Benson, Thermochemical kinetics-Methods for the estimation of thermochemical data and rate parameters, 2nd Edition, Wiley, (1976).Google Scholar
  24. 24.
    E. C. W. Clarke and D. N. Glew, Trans. Faraday Soc., 62 (1966) 539.Google Scholar
  25. 25.
    C. G. De Kruif and J. G. Blok, J. Chem. Thermodynamics, 1982, 14, 201.Google Scholar
  26. 26.
    H. Bothe and H. K. Cammenga, Thermochim. Acta, 40 (1980) 29.Google Scholar
  27. 27.
    H. K. Cammenga and H. Bothe, Coffein, Theophyllin und Theobromin: Physikalischchemische Untersuchungen für Lebensmitteltechnologie und Pharmazie, 41. Berichtsband des Forschungskreises für Ernährungsindustrie, Hannover (1983) 97.Google Scholar
  28. 28.
    U. J. Griesser, A. Burger and K. Mereiter, Nato advanced research workshop. Crystals: Supramolecular materials, Sestri Levante, Italy, Aug. 31-Sept. 4, 1995.Google Scholar
  29. 29.
    U. J. Griesser and A. Burger, International Journal of Pharmaceutics, 120 (1995) 83.Google Scholar
  30. 30.
    H. G. M. Edwards, E. Lawson, M. Dematas, L. Shields and P. York, Journal of the Chemical Society-Perkin Transactions II, 10 (1997) 1985.Google Scholar
  31. 31.
    P. V. Babilev and V. V. Chiripitko, Chemical Abstracts, 103 (1985) 92720f.Google Scholar
  32. 32.
    A. Cesàro and G. Starec, J. Phys. Chem., 84 (1980) 1345.Google Scholar
  33. 33.
    F. Sabon, S. Alberola, A. Terol and B. Jeanjean, Trav. Soc. Pharm. Montpellier, 39 (1979) 19.Google Scholar
  34. 34.
    V.-P. Lehto and E. Laine, Thermochim. Acta, 317 (1998) 47.Google Scholar
  35. 35.
    H. Doser, Arch. Pharm., 53 (1943) 251.Google Scholar
  36. 36.
    E. Suzuki, K. Shimomura and K. Sekiguchi, Chem. Pharm. Bull., 37 (1989) 493.Google Scholar
  37. 37.
    N. V. Phadnis and R. Suryanarayanan, J. Pharm. Sci., 86 (1997) 1256.Google Scholar
  38. 38.
    J. G. Fokkens, J. G. M. Amelsfoord, C. J de Baley, C. G. de Kruif and J. Wilting, Int. J. Pharm., 14 (1983) 79.Google Scholar
  39. 39.
    F. U. Krahn and J. B. Mielck, Pharm. Acta Helv., 62 (1987) 247.Google Scholar
  40. 40.
    M. Kuhnert-Brandstätter, A. Kofler and A. Vlachopoulos, Sci. Pharm., 36 (1968) 164.Google Scholar
  41. 41.
    H. Pöhlmann, Ch. Gulde, R. Jahn and S. Pfeifer, Pharmazie, 30 (1975) 709.Google Scholar
  42. 42.
    T. Umeda, N. Ohnishi, T. Yokoyama, K. Kuroda, T. Kuroda, E. Tatsumi and Y. Matsuda, Yakugaku Zasshi, 104 (1984) 786.Google Scholar
  43. 43.
    N. Kaneniwa, T. Yamaguchi, N. Watari and M. Otsuka, Yakugaku Zasshi, 104 (1984) 184.Google Scholar
  44. 44.
    M. E. Auer, S. Cianferani, U. J. Griesser, U. Ch. Hofmeier and M. Szelagiewicz, XXIXe Journées de Calorimétrie et d.Analyse Thermique-AFCAT, 23rd Annual Meeting of the Swiss Society for Thermal Analysis and Calorimetry-STK (1998) Basel, Switzerland.Google Scholar
  45. 45.
    M. Kaminski and W. Zielenkiewicz, Calorim. Anal. Therm., 16 (1985) 281.Google Scholar
  46. 46.
    R. R. A. Abou-Shaaban and A. P. Simonelli, Thermochim. Acta, 26 (1978) 111.Google Scholar
  47. 47.
    F. U. Krahn and J. B. Mielck, Int. J. Pharm., 53 (1989) 25.Google Scholar
  48. 48.
    J.-O. Henck, Dissertation, Innsbruck (1995).Google Scholar
  49. 49.
    J. Ketolainen, E. Suhiko, A. Poso, M. Ahlgren, J. Gynther and P. Paronen, Barcelona meeting Abstract book (1995) p. 110.Google Scholar
  50. 50.
    U. J. Griesser, Dissertation, Innsbruck (1991).Google Scholar
  51. 51.
    C. G. De Kruif, J. Voogd and J. C. A. Offringa, J. Chem. Thermodynamics, 11 (1979) 651.Google Scholar
  52. 52.
    M. A. V. Ribeiro Da Silva, M. J. S. Monte and M. A. R Matos, J. Chem. Thermodynamics, 21 (1989) 159.Google Scholar
  53. 53.
    E. Kaisersberger, W. Hädrich and W.-D. Emmerich, Thermochim. Acta, 95 (1985) 331.Google Scholar
  54. 54.
    H. Ebeling and E. U. Franck, Ber. Bunsenges. Phys. Chem., 88 (1984) 862.Google Scholar
  55. 55.
    M. Tesconi, S.H. Yalkowsky, Journal of Pharmaceutical Sciences, 87 (1998) 1512.Google Scholar
  56. 56.
    A. Boller and H. G. Wiedemann, J. Therm. Anal. Cal., 53 (1998) 431.Google Scholar
  57. 57.
    R. J. Behme and D. Brooke, J. Pharm. Sci., 80 (1991) 986.Google Scholar
  58. 58.
    E. Marti, O. Heiber and A. Geoffroy, Internal report Ciba-Geigy Ltd. Basel, 4.12.1980.Google Scholar
  59. 59.
    E. Marti and A. Geoffroy, Poster Presentation, STK Annual Meeting, Freiburg i. Br., 26.09.1996.Google Scholar
  60. 60.
    M. Epple, H. K. Cammenga, S. M. Sarge, R. Diedrich and V. Balek, Thermochim. Acta, 250 (1995) 29.Google Scholar
  61. 61.
    J.-O. Henck and M. Kuhnert-Brandstätter, Journal of Pharmaceutical Sciences, 88 (1999) 103.Google Scholar
  62. 62.
    A. Boehncke, K. Martin, M. G. Müller and H. K. Cammenga, J. Chem. Eng. Data, 41 (1996) 543.Google Scholar
  63. 63.
    S. Bruns, J. Reichelt and H. K. Cammenga, Thermochim. Acta, 72 (1984) 31.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • U. J. Griesser
  • M. Szelagiewicz
  • U. Ch. Hofmeier
  • C. Pitt
  • S. Cianferani

There are no affiliations available

Personalised recommendations