Skip to main content
Log in

Heat Capacities and Thermal Properties of a Homogeneous Ethylene-1-octene Copolymer by Adiabatic Calorimetry

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Specific heat capacities of a homogeneous ethylene-1-octene copolymer were measured by adiabatic calorimetry in the temperature range from 5 to 400 K (stepwise heating at averaged rates of approximately 1 to 34 K h–1, after cooling at rates in the range from 8 K h–1 to 4 K min–1). The glass transition takes place from roughly 205 to225 K and is centred around approximately 215 K. At the latter temperature, also the temperature drifts during the stabilisation periods are at maximum. Clearly, with devitrification above 215 K also melting sets in. Using two sets of reference data (one for branched and linear polyethylenes, BPE, and the other for strictly linear polyethylene, LPE)for completely crystalline and for completely amorphous material, the crystallinity of the polymer was calculated as a function of temperature, within the two-phase model. In heating, the crystallinity decreased from 0.254 to zero in the temperature range from 220 to 360 K, confirming earlier DSC heat capacity measurements. During the stabilisation periods, below325 K, negative drifts were observed, related to endothermic effects caused by melting. However, in the temperature range from 325 K up to the end melting temperature, 360 K, positive drifts were measured, reflecting exothermic effects. These are attributed to recrystallisation phenomena. The occurrence and amount of recrystallisation depend on the thermal history of the sample: slower cooling and a longer time spent at a temperature of annealing clearly diminish recrystallisation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. B. F. Mathot (Ed.), Calorimetry and Thermal Analysis of Polymers, Hanser Publishers, Munich, Vienna, New York 1994.

    Google Scholar 

  2. J. C. van Miltenburg, V. B. F. Mathot, P. J. van Ekeren and L. D. Ionescu, J. Therm. Anal. Cal., 56 (1999) 1017.

    Article  CAS  Google Scholar 

  3. S. Hosoda, A. Uemura, Y. Shigematsu, I. Yamaamoto and K. Kojima, Stud. Surf. Sci. Catal., 89 (1994) 365.

    Article  CAS  Google Scholar 

  4. Y.-C. Hwang, S. Chum, R. Guerra and K. Sehanobish, Antec '94 SPE Conf. Proc., Vol. III (1994) 3414.

    Google Scholar 

  5. J. C. van Miltenburg, A. C. G. van Genderen and G. J. K. van den Berg, Thermochim. Acta, 319 (1998) 151.

    Article  CAS  Google Scholar 

  6. J. C. van Miltenburg, G. J. K. van den Berg and M. J. van Bommel, J. Chem. Thermodyn., 19 (1987) 1129.

    Article  CAS  Google Scholar 

  7. H. Preston-Thomas, Metrologia, 27 (1990) 3 and Metrologia, 27 (1990) 107.

    Article  Google Scholar 

  8. B. Wunderlich and G. Czornyj, Macromolecules, 10 (1977) 906.

    Article  CAS  Google Scholar 

  9. V. B. F. Mathot, Polymer, 25 (1984) 579.

    Article  CAS  Google Scholar 

  10. ATHAS data bank. For a recent description see: B. Wunderlich, Pure and Appl. Chem., 67 (1995) 1019. Detailed information may also be found on the internet: http://web.utk.edu/~athas

    Google Scholar 

  11. V. B. F. Mathot, R. L. Scherrenberg, M. F. J. Pijpers and W. Bras, J. Thermal Anal., 46 (1996) 681.

    Article  CAS  Google Scholar 

  12. V. B. F. Mathot, R. L. Scherrenberg, M. F. J. Pijpers and Y.M.T. Engelen, Structure, Crystallisation and Morphology of Homogeneous Ethylene-Propylene, Ethylene-1-Butene and Ethylene-1-Octene Copolymers with High Comonomer Contents, in: S. Hosoda (Ed.), The New Trends In Polyolefin Science and Applications, Research Signpost, Trivandrum (India) (1996) 71.

    Google Scholar 

  13. V. B. F. Mathot, Chapter 5: Thermal Characterization of States of Matter, in: V. B. F. Mathot (Ed.), Calorimetry and Thermal Analysis of Polymers, Hanser Publishers, Munich, Vienna, New York 1994, p. 105.

    Google Scholar 

  14. P. J. van Ekeren, Chapter 2: Thermodynamic Background to Thermal Analysis and Calorimetry, in: M. E. Brown (Ed.), Handbook of Thermal Analysis and Calorimetry. Volume I: Principles and Practice, Elsevier, Amsterdam 1998, p. 75.

    Google Scholar 

  15. V. B. F. Mathot, R. L. Scherrenberg and M. F. J. Pijpers, Polymer, 39 (1998) 4541.

    Article  CAS  Google Scholar 

  16. R. Scherrenberg, V. Mathot and A. van Hemelrijck, Thermochim. Acta, 330 (1999) 3.

    Article  CAS  Google Scholar 

  17. R. Androsch, Polymer, 40 (1999) 2805.

    Article  CAS  Google Scholar 

  18. A. Wurm, M. Merzlyakov and C. Schick, Thermochim. Acta, 330 (1999) 121.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Ekeren, P.J., Ionescu, L.D., Mathot, V.B.F. et al. Heat Capacities and Thermal Properties of a Homogeneous Ethylene-1-octene Copolymer by Adiabatic Calorimetry. Journal of Thermal Analysis and Calorimetry 59, 683–697 (2000). https://doi.org/10.1023/A:1010185200313

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010185200313

Navigation