Skip to main content
Log in

Abstract

The paper gives a survey of the history of damping methods for balances. Representation on Egyptian drawings demonstrate that the person performing the weighing shortened the measuring time by holding the suspension cords and touching the beam. By means of delimiters, the Romans constricted the deflection amplitudes. In the 19th century, the movements of precision balances were damped with a brush. For analytical balances, locking mechanism were developed, often combined with levers lifting the weighing scales and the beam in order to relieve the knife-edges. Half-arresting was used to curtail weighings. Air damping was invented by Arzberger in 1875, and eddy current damping by Marek in 1906. In electronic balances, lag, lead and filter elements and absorptive attenuators are used. For digital balances, the fast-reacting nullification of eddy signals is applied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Felgenträger, Feine Waagen, Wägungen und Gewichte. Berlin 1932, p. 3.

    Google Scholar 

  2. Th. Gast, T. Brokate and E. Robens, Massebestimmung. In: M. Kochsiek, M. Gläser (Eds), Mass Determination, Wiley-VCH, Weinheim 1999, in press.

    Google Scholar 

  3. H. R. Jenemann, Mass und Gewicht, (1992) 470 and 509.

  4. H. R. Jenemann, Berichte zur Wissenschaftsgeschichte, 20 (1997) 1.

    Google Scholar 

  5. C. H. Massen, J. A. Poulis and E. Robens, High-speed weighing (in press).

  6. H. R. Jenemann and E. Robens, Thermochim. Acta, 152 (1989) 249.

    Article  Google Scholar 

  7. C. J. Williams, American Laboratory, (1969) 1163.

  8. Y. Kobayashi, Y. Nezu, K. Uchikawa, S. Ikeda and H. Yano, Bulletin of NRLM, 33 (1984) 7.

  9. N. Mendelssohn, Annalen der Physik, 29 (1808) 153.

    Google Scholar 

  10. C. F. Plattner, Die Probirkunst mit dem Lötrohre, Leipzig 1833, p. 33.

  11. M. Gläser, Massekomparatoren. In: M. Kochsick, M. Gläser (Eds), Massebestimmung, VCH, Weinheim 1997, p. 442.

    Google Scholar 

  12. F. Arzberger, Annalen der Chemie, 178 (1875) 382.

    Google Scholar 

  13. H. R. Jenemann, Blätter für Technikgeschichte, 49 (1987) 7.

    Google Scholar 

  14. P. Curie, Comptes rendus hebd. séances Acad. Sci., 108 (1889) 663.

    Google Scholar 

  15. H. R. Jenemann, Mitt. d. Oberhessischen Geschichtsvereins Giessen, 66 (1981) 5.

    Google Scholar 

  16. H. R. Jenemann, Z. f. Unternehmensgeschichte, 31 (1986) 117.

    Google Scholar 

  17. W. Kuhn, E. Robens, G. Sandstede and G. Walter, Methods of the elimination of weighing troubles due to convection in a microbalance. In: C. H. Massen, H. J. van Beckum (Eds), Vacuum Microbalance Techniques, Vol. 1. Plenum Press, New York 1961, p. 1.

    Google Scholar 

  18. W. C. Tripp, R. W. Vest and N. M. Tallan, System for measuring microgram weight changes under controlled oxygen partial pressure to 1800°C. In: P. M. Waters (Ed.), Vacuum Microbalance Techniques, Vol. 4. Plenum Press, New York 1965, p. 141.

    Google Scholar 

  19. O. Frölich, Die Entwicklung der clektrischen Messung. Braunschweig, 1905, p. 17.

  20. W. Marek, Österreichische Zentral-Zeitung für Optik und Mechanik, 1 (1906) 5.

    Google Scholar 

  21. R. F. Walker, Microbalance techniques for high temperature applications. In: M. J. Katz (Ed.), Vacuum Microbalance Techniques, Vol. 1. Plenum Press, New York 1961, p. 87.

    Google Scholar 

  22. E. A. Gulbransen and K. F. Andrew, An enclosed physical chemistry laboratory: The vacuum microbalance. In: M. J. Katz (Ed.), Vacuum Microbalance Techniques, Vol. 1. Plenum Press, New York 1961, p. 1.

    Google Scholar 

  23. R. J. Kolenkow and P. W. Zitzewitz, A microbalance for magnetic susceptibility measurements. In: P. M. Waters (Ed.), Vacuum Microbalance Techniques, Vol. 4. Plenum Press, New York 1965, p. 195.

    Google Scholar 

  24. H. Mayer, R. Niedermayer, W. Schroen, D. Stünkel and H. Göhre, On some modification of a torsion microbalance for use in ultrahigh vacuum. In: K. H. Behrndt (Ed.), Vacuum Microbalance Techniques, Vol. 3. Plenum Press, New York 1963, p. 75.

    Google Scholar 

  25. H. R. Jenemann, The early history of balances based on electromagnetic and electrodynamic force compensation. In: J. U. Keller, E. Robens (Eds), Microbalance Techniques, Proc. of the 25th Conference on Vacuum Microbalance Techniques 1993 Siegen, Multi-Science Publ., Brentwood 1994, p. 25.

    Google Scholar 

  26. H. R. Jenemann, Die Waage des Chemikers — The Chemist's Balance. DECHEMA/GDCh, Frankfurt 1997.

    Google Scholar 

  27. R. L. Schwoebel, Beam microbalance design, construction and operation. In: A. W. Czanderna, S. P. Wolsky (Eds), Microweighing in Vacuum and Controlled Environments. Elsevier, Amsterdam 1980, p. 59.

    Google Scholar 

  28. F. A. Mauer, Rev. Sci. Instr., 25 (1954) 598.

    Article  CAS  Google Scholar 

  29. L. Cahn and H. R. Schultz, The Cahn recording gram electrobalance. In: K. H. Behrndt (Ed.), Vacuum Microbalance Techniques, Vol. 3. Plenum Press, New York 1963, p. 29.

    Google Scholar 

  30. W. E. Boggs, The adaptation of the Cahn electrobalance control system to the automatic operation of a quartz-beam vacuum microbalance. In: A. W. Czanderna (Ed.), Vacuum Microbalance Techniques, Vol. 6. Plenum Press, New York 1967, p. 45.

    Google Scholar 

  31. Th. Gast, Microweighing in vacuo with a magnetic suspension balance. In: K. H. Behrndt (Ed.), Vacuum Microbalance Techniques, Vol. 3. Plenum Press, New York 1963, p. 45.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gast, T., Jenemann, H.R. & Robens, E. The Damping of Balances. Journal of Thermal Analysis and Calorimetry 55, 347–355 (1999). https://doi.org/10.1023/A:1010182610908

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010182610908

Navigation