Skip to main content
Log in

Structural Relaxation in Amorphous Solids Studied by Thermal Analysis Methods

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Structural relaxation for simple and more complex thermal histories is described by a phenomenological model based on a non-exponential relaxation function, the reduced-time concept and the nonlinear structural contribution to the relaxation time. The history, development of experimental techniques and data analysis is described. It is shown that the volume and enthalpy relaxation response can conveniently be compared on the basis of a fictive relaxation rate, R f. A simple equation relating R f and the parameters of the phenomenological model is given. The calculated data for moderate departures from equilibrium are in good agreement with our experiments and data previously reported in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Simon, Z. anorg. allgem. Chem., 203 (1931) 220.

    Article  Google Scholar 

  2. G. W. Scherer, Relaxation in Glass and Composites; Wiley-Interscience, New York 1986.

    Google Scholar 

  3. A. J. Kovacs, Fortschr. Hochpolym. Forsch., 3 (1963) 394.

    Google Scholar 

  4. A. J. Kovacs, J. J. Aklonis, J. M. Hutchinson and A. R. Ramos, J. Polym. Sci., 17 (1979) 1097.

    CAS  Google Scholar 

  5. C. T. Moynihan, P. B. Macedo, C. J. Monrose, P. K. Gupta, M. A. DeBolt, J. F. Dill, B. E. Dom, P. W. Drake, A. J. Easteal, P. B. Elerman, R. P. Moeller, H. Sasabe and J. A. Wilder, Ann. N.Y. Acad. Sci., 279 (1976) 15.

    CAS  Google Scholar 

  6. A. Q. Tool, J. Am. Ceram. Soc., 29 (1946) 240.

    Article  CAS  Google Scholar 

  7. O. S. Narayanaswamy, J. Am. Ceram. Soc., 54 (1971) 491.

    Article  CAS  Google Scholar 

  8. O. V. Mazurin, S. M. Rekhson and Y. K. Startsev, Sov. J. Glass. Phys. Chem., 1 (1975) 412.

    Google Scholar 

  9. I. M. Hodge and A. R. Berens, Macromolecules, 15 (1982) 762.

    Article  CAS  Google Scholar 

  10. C. T. Moynihan, A. J. Easteal, M. A. DeBolt and J. Tucker, J. Am. Ceram. Soc., 59 (1976) 12.

    Article  CAS  Google Scholar 

  11. I. M. Hodge, J. Non-Cryst. Solids, 169 (1994) 211.

    Article  CAS  Google Scholar 

  12. G. Adam and J. H. Gibbs, J. Chem. Phys., 43 (1965) 139.

    Article  CAS  Google Scholar 

  13. G. W. Scherer, J. Am. Ceram. Soc., 67 (1984) 504.

    CAS  Google Scholar 

  14. I. M. Hodge, Macromolecules, 20 (1987) 2897.

    Article  CAS  Google Scholar 

  15. A. Q. Tool and C. G. Eichlin, J. Am. Ceram. Soc., 14 (1931) 276.

    Article  CAS  Google Scholar 

  16. A. Q. Tool, J. Am. Ceram. Soc., 31 (1948) 177.

    Article  CAS  Google Scholar 

  17. H. N. Ritland, J. Am. Ceram. Soc., 39 (1956) 403.

    Article  CAS  Google Scholar 

  18. S. Spinner and A. Napolitano, J. Res., 70A (1966) 147.

    Google Scholar 

  19. P. B. Macedo and A. Napolitano, J. Res., 71A (1967) 231.

    Google Scholar 

  20. J. M. Hutchinson, Prog. Polym. Sci., 20 (1995) 703.

    Article  CAS  Google Scholar 

  21. R. Greiner and F. R. Schwarzl, Rheol. Acta, 23 (1984) 378.

    Article  CAS  Google Scholar 

  22. A. J. Kovacs, J. Polym. Sci., 30 (1958) 131.

    Article  CAS  Google Scholar 

  23. O. V. Mazurin, J. Non-Cryst. Solids, 25 (1977) 130.

    Article  Google Scholar 

  24. S. M. Rekhson, A. V. Bulaeva and O. V. Mazurin, Sov. J. Inorg. Mater., 7 (1971) 622.

    Google Scholar 

  25. J. Málek and J. Shánělová, unpublished results.

  26. D. W. Henderson and D. G. Ast, J. Non-Cryst. Solids, 64 (1984) 43.

    Article  CAS  Google Scholar 

  27. G. W. Scherer, J. Am. Ceram. Soc., 69 (1986) 374.

    Article  Google Scholar 

  28. M. Hara and S. Suetoshi, Rep. Res. Lab. Asahi Glass Co., 5 (1955) 126.

    CAS  Google Scholar 

  29. M. V. Volkenstein and Y. A. Sharonov, Vysokomol.. Soedin., 3 (1961) 1739.

    Google Scholar 

  30. C. R. Foltz and P. V. McKinney, J. Appl. Polym. Sci. 13 (1969) 2235.

    Article  CAS  Google Scholar 

  31. S. E. B. Petrie, J. Polym. Sci, Part A-2, 10 (1972) 1255.

    Article  CAS  Google Scholar 

  32. J. L. Gomez Ribelles, R. D. Calleja, R. Ferguson and J. M. G. Cowie, Polymer, 40 (1987) 2262.

    Article  Google Scholar 

  33. J. Pérez and J. Y. Cavaille, Makromol. Chem., 192 (1991) 2141.

    Article  Google Scholar 

  34. A. J. Pappin, J. M. Hutchinson and M. D. Ingram, Macromolecules, 25 (1992) 1084.

    Article  CAS  Google Scholar 

  35. P. Cortés, S. Montserrat and J. M. Hutchinson, J. Appl. Polym. Sci., 63 (1997) 17.

    Article  Google Scholar 

  36. S. Montserrat, P. Cortés, Y. Calventus and J. M. Hutchinson, J. Thermal Anal., 49 (1997) 79.

    Article  CAS  Google Scholar 

  37. P. Cortés and S. Montserrat, J. Polym. Sci. B, 36 (1998) 113.

    Article  Google Scholar 

  38. P. Cortés, S. Montserrat, J. Ledru and J. M. Saiter, J. Non-Cryst.Solids, 235.237 (1998) 522.

    Article  Google Scholar 

  39. J. M. Hutchinson and M. Ruddy, J. Polym. Sci. Polym. Phys. Ed., 26 (1988) 2341.

    Article  CAS  Google Scholar 

  40. J. Málek, Thermochim. Acta, 313 (1998) 181.

    Article  Google Scholar 

  41. J. Málek and S. Montserrat, Thermochim. Acta, 313 (1998) 191.

    Article  Google Scholar 

  42. J. Málek, Macromolecules, 31 (1998) 8312.

    Article  Google Scholar 

  43. R. J. Roe and G. M. Millman, Polym. Eng. Sci., 23 (1983) 318.

    Article  CAS  Google Scholar 

  44. H. E. Bair, G. E. Johnson, E. W. Anderson and S. Matsuoka, Polym. Eng. Sci., 21 (1981) 930.

    Article  CAS  Google Scholar 

  45. L. C. E. Struik, Polymer, 28 (1987) 1869.

    Article  CAS  Google Scholar 

  46. T. W. Cheng, H. Keskkula and D. R. Paul, J. Appl. Polymer Sci., 45 (1992) 531.

    Article  CAS  Google Scholar 

  47. J. M. Hutchinson and C. B. Bucknall, Polym. Eng. Sci., 20 (1980) 173.

    Article  CAS  Google Scholar 

  48. H. D. Lee and F. J. McGarry, J. Macromol. Sci. Phys. B, 29 (1990) 11.

    Google Scholar 

  49. J. L. Gomez Ribelles, R. Diaz-Calleja, F. Ferguson and J. M. G. Cowie, Polymer, 28 (1987) 2262.

    Article  CAS  Google Scholar 

  50. J. T. Tauke, T. A. Litovitz and P. B. Macedo, J. Am. Ceram. Soc., 51 (1968) 158.

    Article  CAS  Google Scholar 

  51. P. K. Dixon and S. R. Nagel, Phys. Rev. Lett., 61 (1988) 341.

    Article  CAS  Google Scholar 

  52. J. P. Ducroux, S. M. Rekhson and F. L. Merat, J. Non-Cryst. Solids, 172.174 (1994) 541.

    Article  Google Scholar 

  53. I. Kishimoto, PhD Thesis, Osaka University, 1992.

  54. S. Takahara, PhD Thesis, Osaka University, 1995.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Málek, J., Shánělová, J. Structural Relaxation in Amorphous Solids Studied by Thermal Analysis Methods. Journal of Thermal Analysis and Calorimetry 60, 975–988 (2000). https://doi.org/10.1023/A:1010176212227

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010176212227

Navigation