Skip to main content
Log in

The Thermal Degradation Mechanism and Thermal Mechanical Properties of Two High Performance Heterocyclic Polymer Fibers

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The thermal mechanical properties and degradation behaviors were studied on fibers prepared from two high-performance, heterocyclic polymers, poly(p-phenylenebenzobisthiazole) (PBZT) and poly(p-phenylenebenzobisoxazole) (PBZO). Our research demonstrated that these two fibers exhibited excellent mechanical properties and outstanding thermal and thermo-oxidative stability. Their long-term mechanical tensile performance at high temperatures was found to be critically associated with the stability of the C—O or C—S linkage at the heterocyclic rings on these polymers' backbones. PBZO fibers with the C—O linkages displayed substantially higher thermal stability compared to PBZT containing C—S linkages. High resolution pyrolysis-gas chromatography/mass spectrometry provided the information of the pyrolyzates' compositions and distributions as well as their relationships with the structures of PBZT and PBZO. Based on the analysis of the compositions and distributions of all pyrolyzates at different temperatures, it was found that the thermal degradation mechanisms for both of these heterocyclic polymers were identical. Kevlar®-49 fibers were also studied under the same experimental conditions in order to make a comparison of thermo-oxidative stability and long-term mechanical performance at high temperatures with PBZO and PBZT fibers. The data of two high-performance aromatic polyimide fibers were also included as references.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. F. Wolfe and F. E. Arnold, Macromolecules, 14 (1981) 909.

    Google Scholar 

  2. J. F. Wolfe, B. H. Loo and F. E. Arnold, Macromolecules, 14 (1981) 915.

    Google Scholar 

  3. F. E. Arnold, Jr. and F. E. Arnold, Adv. Polym. Sci., 117 (1994) 257.

    Google Scholar 

  4. A. W. Chow, J. F. Sandell and J. F. Wolfe, Polymer, 29 (1988) 1307.

    Google Scholar 

  5. A. W. Chow, R. D. Hamlin and C. M. Ylitalo, Macromolecules, 25 (1992) 7135.

    Google Scholar 

  6. H. Jiang, W. W. Adams and R. K. Eby, Fibers from Polybenzoxazoles and Polybenzothiazoles, Handbook of Fiber Science and Technology, Vol. III, Part D, Eds M. Lewin and J. Preston, 1996, pp. 171-246.

  7. S. R. Allen and R. J. Farris, in The Materials Science and Engineering of Rigid Rod Polymer (W. W. Adams, R. K. Eby and D. E. McLemore Eds) 1989, p. 134.

  8. S. R. Allen, A. G. Filippov, R. J. Farris and E. L. Thomas, Macromolecules, 14 (1981) 1135.

    Google Scholar 

  9. E. W. Choe and S. N. Kim, Macromolecules, 14 (1981) 920.

    Google Scholar 

  10. S. R. Allen, R. J. Farris and E. L. Thomas, J. Mater. Sci., 20 (1985) 2727.

    Google Scholar 

  11. S. R. Allen, A. G. Filippov, R. J. Farris and E. L. Thomas, J. Appl. Polym. Sci., 26 (1981) 291.

    Google Scholar 

  12. S. Z. D. Cheng, Z. Q. Wu, M. Eashoo, S. L. C. Hsu and F. W. Harris, Polymer, 32 (1991) 1803.

    Google Scholar 

  13. M. Eashoo, D. X. Shen, Z. Q. Wu, C. J. Lee, F. W. Harris and S. Z. D. Cheng, Polymer, 34 (1993) 3209.

    Google Scholar 

  14. M. Eashoo, D. X. Shen, Z. Q. Wu, F. W. Harris, S. Z. D. Cheng, K. H. Gardner and B. S. Hsiao, Macromol. Chem., 195 (1994) 2207.

    Google Scholar 

  15. D. X. Shen, Z. Q. Wu, J. Liu, L. Wang, S. Lee, F. W. Harris, S. Z. D. Cheng, J. Blackwell, T. Wu and S. Chvalun, Polymers & Polym. Composites, 2 (1994) 149.

    Google Scholar 

  16. W. Li, Z. Wu, H. Jiang, F. W. Harris and S. Z. D. Cheng, J. Mater. Sci., 31 (1996) 4423.

    Google Scholar 

  17. W. Li, Z. Wu, M. Leland, J. Y. Park, F. W. Harris and S. Z. D. Cheng, J. Macromol. Sci. Phys., B36 (1997) 315.

    Google Scholar 

  18. F. Li, L. Huang, Y. Shi, X. Jin, Z. Wu, Z. Shen, C. Chung, R. E. Lyon, F. W. Harris and S. Z. D. Cheng, J. Macromol. Sci. Phys., B38 (1999) 107.

    Google Scholar 

  19. J. H. Flynn, in Laboratory Preparation for Macromolecular Chemistry, E. McCaffrey Ed., McGraw Hill, New York 1970, p. 255.

    Google Scholar 

  20. Z. Jiang, X. Jin, X. Gao, W. Zhou, F. Lu and Y. Luo, J. Anal. Appl. Pyrolysis, 33 (1995) 231.

    Google Scholar 

  21. Y. Luo, R. Huo, X. Jin and F. E. Karasz, J. Anal. Appl. Pyrolysis, 34 (1995) 229.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, Z., Li, F., Huang, L. et al. The Thermal Degradation Mechanism and Thermal Mechanical Properties of Two High Performance Heterocyclic Polymer Fibers. Journal of Thermal Analysis and Calorimetry 59, 361–373 (2000). https://doi.org/10.1023/A:1010173004389

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010173004389

Navigation