Skip to main content
Log in

Determination of Kinetic Equations of Alkaline Activation of Blast Furnace Slag by Means of Calorimetric Data

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The alkaline activation of blast furnace slag promotes the formation of new cement materials. These materials have many advantages over ordinary Portland cement, including high strength, low production cost and good durability. However, many aspects of the chemistry of alkaline activated slags are not yet very well understood. Some authors consider that these processes occur through a heterogeneous reaction, and that they can be governed by three mechanisms: a) nucleation and growth of the hydrated phase; b) phase boundary interactions and c) any diffusion process though the layer of hydration products.

The aim of this paper was to determine the mechanism explaining the early reaction of alkaline activation of a blast furnace slag through the use of calorimetric data.

A granulated blast furnace slag from Avilés (Spain) with a specific surface of 4450 cm2> g-1 was used. The alkaline activators used were NaOH, Na2CO3 and a mix of waterglass (Na2SiO3·nH2O and NaOH. The solution concentrations were constant (4% Na2O with respect to the slag mass). The solutions were basic (pH 11-13). The mixes had a constant solution/slag ratio of 0.4.

The thermal evolution of the mixes was monitored by conduction calorimetry. The test time was variable, until a rate of heat evolution equal to or less than 0.3 kJ kg-1 h-1 was attained. The working temperature was 25°C.

The degree of hydration (α) was determined by means of the heat of hydration after the induction period. The law governing the course of the reaction changes at a certain degree of hydration. From a generally accepted equation, the values of α at which the changes are produced were determined. These values of α depend on the nature of the alkaline activator. Nevertheless, for high values of α, the alkaline activation of slag occurs by a diffusion process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. O. Purdon, J. Soc. Chem. Ind., 59 (1940) 191.

    Article  CAS  Google Scholar 

  2. V. D. Glukhovsky, Y. Zaitsev and V. Pakhomow, Silic. Ind., 10 (1983) 197.

    Google Scholar 

  3. Y. R. Zhang, G. Q. Ying and O. S. Xi, Silic. Ind., 3/4 (1988) 55.

    Google Scholar 

  4. S. Wang, Mag. Concr. Res., 43 (1991) 29.

    Article  CAS  Google Scholar 

  5. C. Shi, X. Wu and M. Tang, Adv. Cem. Res., 5 (1993) 1.

    CAS  Google Scholar 

  6. F. Puertas, Materials de Construcción, 45 (1995) 53.

    Article  Google Scholar 

  7. R. Kondo and S. Ueda 5th Intern Symp. Chem. Cem., Tokyo, Vol. 2, 1968, p. 203.

    Google Scholar 

  8. J. H. Taplin, 5th Intern. Symp. Chem. Cem., Tokyo, Vol. 2, 1968, p. 337.

    Google Scholar 

  9. N. Tenoutasse and A. De Doner, Sil. Ind., 35 (1970) 301.

    CAS  Google Scholar 

  10. A. Bezjak, Cem. and Coner. Res., 10 (1980) 553.

    Article  CAS  Google Scholar 

  11. J. H. Sharp, G. W. Brmdley and A. B. N. Narahari, J. Amer. Ceram. Soc., 49 (1966) 379.

    Article  CAS  Google Scholar 

  12. W. Jander, Z. Anorg. Allgem. Chem., 163 (1927) 1.

    Article  CAS  Google Scholar 

  13. A. M. Ginstling and B. I. Brounshtein, J. Appl. Chem. USSR, (English transl.), 23 (1950) 1327.

    CAS  Google Scholar 

  14. A. Fernández-Jiménez and F. Puertas, Cem. Coner. Res., 27 (1997) 359.

    Article  Google Scholar 

  15. A. Fernández-Jiménez and F. Puertas, Materials de Construcción (Spain), 47 (1997) 31.

    Article  Google Scholar 

  16. Z. Huanhai, W. Xuequan, X. Zhongzi and T. Mingshu, Cem. Coner. Res., 23 (1993) 1253.

    Article  Google Scholar 

  17. A. Fernández-Jiménez, F. Puertas and L. Fernández-Carrásco, Materiales de Construcción (Spain), 46 (1996) 23.

    Article  Google Scholar 

  18. S. D. Wang and K. L. Serivener, Cem. Coner. Res., 25 (1995) 561.

    Article  CAS  Google Scholar 

  19. G. Shutter and L. Taerwe, Cem. Coner. Res., 25 (1995) 593.

    Article  Google Scholar 

  20. T. Knudsen, Proc. of 7th Inter. Congr. Chem. Cem., Paris, Vol. 2, 1980, p. 170.

    Google Scholar 

  21. B. Delmon and J. C. Jungers, ‘Introduction à la cinétique Hétérogène’ Lib. Inst. Franc. du Pétrole ‘No15, Science et Technique du Pétrole’, 1969.

  22. M. Avrami, J. Chem. Phys., 7 (1939) 1103; 8 (1940) 212; 3 (1941) 177.

    Article  CAS  Google Scholar 

  23. B. V. Erofe'ev, Compt. Rend. Acad. Sci. URRS, 52 (1946) (in English).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernandez-Jimenez, A., Puertas, F. & Arteaga, A. Determination of Kinetic Equations of Alkaline Activation of Blast Furnace Slag by Means of Calorimetric Data. Journal of Thermal Analysis and Calorimetry 52, 945–955 (1998). https://doi.org/10.1023/A:1010172204297

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010172204297

Navigation