Skip to main content
Log in

Numerous Applications of Fiber Optic Evanescent Wave Fourier Transform Infrared (FEW–FTIR) Spectroscopy for Surface and Subsurface Structural Analysis

  • Published:
Subsurface Sensing Technologies and Applications Aims and scope Submit manuscript

Abstract

A new infrared (IR) interferometric method has been developed in conjunction with low-loss, flexible optical fibers, sensors, and probes. This combination of fiber optical sensors and Fourier Transform (FT) spectrometers can be applied to many fields, including: (i) noninvasive medical diagnostics of cancer and other different diseases in vivo; (ii) minimally invasive bulk diagnostics of tissue; (iii) remote monitoring of tissue, chemical processes, and environment; (iv) surface analysis of polymers and other materials; (v) characterization of the quality of food, pharmacological products, cosmetics, paper, and other wood-related products, as well as (vi) agricultural, forensic, geological, mining, and archeological field measurements. In particular, our nondestructive, fast, compact, portable, remote, and highly sensitive diagnostics tools are very promising for subsurface analysis at the molecular level without sample preparation. For example, this technique is ideal for different types of soft porous foams, rough polymers, and rock surfaces. Such surfaces, as well as living tissue, are difficult to investigate by traditional FTIR methods. We present here FEW–FTIR spectra of polymers, banana and grapefruit peels, and living tissues detected directly at surfaces. In addition, results on the vibrational spectral analysis of normal and pathological skin tissue in the wavenumber region 850–4000cm−1 are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Afanasyeva, N. et al., 1994, Medical application of MIR-fiber spectroscopic probes, in Wolfbeis, O., ed., Biomedical and Medical Sensors: Proc. SPIE 2085, p. 137–142.

  2. Afanasyeva, V., et al., 1995, Spectral biodiagnostics of tissue with fiber optics, Die Makromolekulare Chemie: Macromolecular Symposia 94, p. 269–272.

    Google Scholar 

  3. Ryland, S., 1995, Infrared microscopy of forensic paint evidence: Practical guide to infrared microspectroscopy: Marcel Dekker, Inc., New York.

    Google Scholar 

  4. Derrick, M., 1995, Infrared microspectroscopy in the analysis of cultural artifacts: Practical guide to infrared microspectroscopy: Marcel Dekker, Inc., New York.

    Google Scholar 

  5. Afanasyeva, N., 1998, Fiberoptic evanescent wave Fourier transform infrared (FEW-FTIR) spectroscopy of polymer surfaces and living tissue: submitted to Macromolecular Chem. & Phys., Macromolecular Symposia: Huthig & Wept Verlag.

  6. Hocde, S., et al., 1998, Proc. SPIE 3262, p. 144.

  7. Le Foulgoe, K., Le Neindre, L., Zhang, V. H., and Lucas, J., 1996, Proc. SPIE 2836, p. 26.

  8. Zhang, X. H., et al., 1995, Proc. SPIE 2396, p. 78.

  9. Gotshal, Y., and Katzir, 1998, A.Technical Abstract Digest of Bios '98, 3262C-63, p. 188.

    Google Scholar 

  10. Bormashenko, E., et al., 1999, Proc SPIE 3596, in press.

  11. Afanasyeva, N., Bruch, R., and Katzir, A., 1999, Infrared fiberoptic evanescent wave spectroscopy: Applications in biology and medicine: Proc. SPIE 3596, p. 152–164.

  12. Harrick, N. J., 1967, Internal reflection spectroscopy: John Wiley and Sons, Inc., New York.

    Google Scholar 

  13. Brooks, A., et al., 1999, FEW-FTIR spectroscopy applications and computer data processing for noninvasive skin tissue diagnostics in vivo: Proc. SPIE 3596, p. 140–151.

  14. Afanasyeva, N., Makhine, V., and Bruch, R., 1997, Diagnostics of breast cancer tissues by fiber optic evanescent wave Fourier transform IR (FEW-FTIR) spectroscopy: Proc. SPIE 2979, p. 478–486.

  15. Afanasyeva, N., Kolyakov, S., Letokhov, L., and Golovkina, V., 1997, Diagnostics of cancer tissues by fiberoptic evanescent wave Fourier transform IR (FEW-FTIR) spectroscopy: Proc. SPIE 2979, p. 478–486.

  16. Stark, P. B., Herron, M. M., and Matteson, A., 1993, Empirically minimax affine mineralogy estimates from Fourier Transform Infrared spectrometry using a decimated wavelet basis: Appl. Spect., v. 47, p. 1820–1829.

    Google Scholar 

  17. Weiner, S., and Goldberg, P. 1990, On-site Fourier transform-infrared spectrometry at an archaeological excavation: Spectroscopy, v. 5, no. 2, p. 46–50, February.

    Google Scholar 

  18. Parker, F. S., 1971, Infrared spectroscopy in biochemistry, biology, and medicine: Plenum Press, New York.

    Google Scholar 

  19. Krimm, S., 1987, in Durig, J. R., ed., Vibrational Spectra and Structure: Amsterdam, Elsevier, v. 16, p. 1–12.

    Google Scholar 

  20. Brooks, A., Afanasyeva, N., Bruch, R., and Makhine, V., 1999, Investigations of human skin surfaces in vivo using fiberoptic evanescent wave Fourier transform infrared (FEW-FTIR) spectroscopy: Surface and Interface Anal., v. 27, p. 221–229.

    Google Scholar 

  21. Stryer, L., 1989, Molecular design of life: W.H. Freeman and Company, New York.

    Google Scholar 

  22. Afanasyeva, N., et al., 1998, Minimally invasive and ex vivo diagnostics of breast cancer tissues by fiber optic evanescent wave Fourier transform IR (FEW-FTIR) spectroscopy: Proc. SPIE 3250, p. 140–147.

  23. Afanasyeva, M. I., Kolyakov, S. F., and Butvina, L. N., 1998, Remote skin tissue diagnostics in vivo by fiber optic evanescent wave Fourier transform infrared spectroscopy: Proc. SPIE 3257, p. 260–266.

  24. Mantsch, H., and Chapman, D., ed., 1996, Infrared Spectroscopy of Biomolecules, Chapter 11: Wiley-Liss, New York.

    Google Scholar 

  25. Nakanishi, K., and Solomon, P. H., 1997, Infrared absorption spectroscopy: Holden-Day Inc., San Francisco.

    Google Scholar 

  26. Aldrich, D., and Smith, M., 1995, Pharmaceutical applications of infrared microspectroscopy: Practical guide to infrared microspectroscopy: Marcel Dekker, Inc., New York.

    Google Scholar 

  27. Bruch, R., et al., 1999, Development of X-ray and extreme ultraviolet (EUV) optical devices for diagnostics and instrumentation for various surface applications: Surface and Interface Anal, v. 27, p. 236–246.

    Google Scholar 

  28. Bruch, R., et al., 1997, Fourier transform infrared evanescent wave (FTIR-FEW) spectroscopy of tissue: Proc. SPIE 2970, p. 408–415.

  29. Artjushenko, V., et al., 1995, MIR fiber spectroscopy for minimal invasive diagnostics: Proc. SPIE, 2631.

  30. Afanasyeva, N., et al., 1996, Diagnostics of cancer by fiber optic evanescent wave FTIR (FEW-FTIR) spectroscopy: Proc. SPIE 2928, p. 154–157.

  31. Afanasyeva, N., et al., 1997, Spectral diagnostics of tumor tissues by fiber optic infrared spectroscopy method: Doklady Academy of Sciences, v. 356, p. 118–121.

    Google Scholar 

  32. Brooks, A., et al., 1998, Investigations of normal human skin tissue and acupuncture point of human skin tissue using fiberoptical FTIR spectroscopy: Proc. SPIE 3262, p. 173–184.

  33. Ma, L., et al., 1998, Tumor diagnostics using backpropagation neural network method: Proc. SPIE 3257, p. 273–283.

    Google Scholar 

  34. Brooks, A., et al., 1997, Investigation of normal skin tissue using fiberoptical FTIR spectroscopy: Proc. SPIE 3195, p. 323–333.

  35. Afanasyeva, N., et al., 1997, Noninvasive diagnostics of human tissue in vivo: Proc. SPIE 3195, p. 314–322.

    Google Scholar 

  36. Bruch, R., et al., 1998, Various new applications of fiberoptical infrared Fourier transform spectroscopy for dermatology: Proc. SPIE 3564, p. 42–51.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Afanasyeva, N., Bruch, R., Kano, A. et al. Numerous Applications of Fiber Optic Evanescent Wave Fourier Transform Infrared (FEW–FTIR) Spectroscopy for Surface and Subsurface Structural Analysis. Subsurface Sensing Technologies and Applications 1, 45–63 (2000). https://doi.org/10.1023/A:1010170625917

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010170625917

Navigation