Skip to main content
Log in

Interpretation of the Metabolic Enthalpy Change, ΔHmet, Calculated for Microbial Growth Reactions in Soils

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The microcalorimetric method was used to calculate the metabolic enthalpy change per mol of glucose degraded by soil microorganisms, ΔH met. This parameter has been calculated by microcalorimetry for many organic, inorganic and biochemical reactions, but there is only some information about its quantification for microbial growth reactions in soils. Values of ΔH met were calculated for different soil samples collected in Galicia (Spain) and Campinas (Săo Paolo, Brazil). Exponential microbial growth was stimulated in all soil samples by the addition of glucose and power-time curves were recorded. Results showed changes in the values of ΔH met calculated for all the soil samples, suggesting a dependence of this value with the microbial growth rate constant, with the percentage of growth, with the initial number of microorganisms of soil samples, with the quantity of glucose added and with the strain of bacteria growing in soil.

The interpretation of variations of ΔH met provides important qualitative and quantitative information. It reports data that allow to interpret from a qualitative point of view, the increase in biomass as a consequence of the degradation of the organic matter in soil, to understand changes in the percentages of soil organic matter and to know if the microbial population growing in differential soil samples is homogeneous. Therefore, to report that value would be very important in ecological studies, but beforehand, it is necessary to solve some problems that can appear in the experiments done to make the quantification .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Yamano and K. Takahashi, Agric. Biol. Chem., 47 (1983) 1493.

    CAS  Google Scholar 

  2. C. Airoldi and S. A. M. Critter, Thermochim. Acta, 288 (1996) 73.

    Article  CAS  Google Scholar 

  3. K. Ljungholm, B. Norén and G. Odham, Oikos, 34 (1980) 98.

    Google Scholar 

  4. U. Mortensen, B. Norén and I. Wadsö, Bull. Ecol. Res. Comm., 17 (1973) 189.

    Google Scholar 

  5. L. Nuñez, N. Barros and I. Barja, Thermochim. Acta, 237 (1994) 73.

    Article  Google Scholar 

  6. G. P. Sparling, Soil Biol. Biochem., 13 (1981) 93.

    Article  CAS  Google Scholar 

  7. U. von Stockar and I. Marison, Adv. Biochem. Eng. Biotechnol., 40 (0989) 93.

  8. M. Murgier and J. P. Belaich, J. Bacteriol., 105 (1971) 573.

    CAS  Google Scholar 

  9. T. Kimura and K. Takahashi, J. Gen. Microbiol., 131 (1985) 3083.

    CAS  Google Scholar 

  10. M. Hashimoto and K. Takahashi, Agric. Biol. Biochem., 46 (1982) 1559.

    CAS  Google Scholar 

  11. X. Wei-Hong, X. Chang tie, Q. Song-Shung and Y. Tian-Quan, Thermochim. Acta, 195 (1992) 297.

    Article  Google Scholar 

  12. N. Barros, I. Gómez Orellana, S. Feijóo and R. Balsa, Thermochim Acta, 249 (1995) 161.

    Article  CAS  Google Scholar 

  13. E. Gnaiger, J. Exp. Zool., 228 (1983) 471.

    Article  CAS  Google Scholar 

  14. E. Gnaiger and R. B. Kemp, Biochim. Biophys. Acta, 1016 (1990) 328.

    Article  CAS  Google Scholar 

  15. L. Yerushalmi and B. Volesky, Biotechnol. Bioeng., 23 (1981) 2373.

    Article  CAS  Google Scholar 

  16. L. Gustafsson, Thermochim. Acta, 193 (1991) 145.

    Article  CAS  Google Scholar 

  17. A. F. Gaudy, P. Y. Yang, R. Bustamante and E. T. Gaudy, Biotechnol. Bioeng., 15 (1973) 589.

    Article  Google Scholar 

  18. S. A. M. Critter, J. A. Simoni and C. Airoldi, Thermochim. Acta, 232 (1994) 145.

    Article  CAS  Google Scholar 

  19. W. J. Payne, Ann. Rev. Microbiol., 24 (1970) 17.

    Article  CAS  Google Scholar 

  20. D. T. Brook and M. T. Madigan, Biology of Microorganisms, Prentice Hall, New Jersey 1993.

    Google Scholar 

  21. M. J. Pelczar and E. C. S. Chan, Elements of Microbilogy, McGraw-Hill, 1981.

  22. N. Barros, S. Feijóo and R. Balsa, Thermochim. Acta, 296 (1997) 53.

    Article  CAS  Google Scholar 

  23. B. Birou, I. Marison and U. von Stockar, Biotechnol. Bioeng., 30 (1987) 650.

    Article  CAS  Google Scholar 

  24. L. Gustafsson, Microbes in the sea, Ellis Horwood, Chichester 1987, p. 167.

    Google Scholar 

  25. R. J. Winzler and J. P. Baumberger, J. Cell. Comp. Physiol., 12 (1938) 183.

    Article  CAS  Google Scholar 

  26. M. Alexander, Introduction to Soil Microbiology, Wiley, New York 1961.

    Google Scholar 

  27. P. Prassad, S. Basu and N. Behera, Plant and Soil, 175 (1994) 85.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barros, N., Feijóo, S., Simoni, A. et al. Interpretation of the Metabolic Enthalpy Change, ΔHmet, Calculated for Microbial Growth Reactions in Soils. Journal of Thermal Analysis and Calorimetry 63, 577–588 (2000). https://doi.org/10.1023/A:1010162425574

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010162425574

Navigation