Skip to main content
Log in

Kinetics of Solute Flow to Partial Dislocation in Cu–3.4 At.% Sb

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The kinetics of solute segregation to partial dislocations in a Cu–3.4 At.% Sb alloy was studied by using a phenomenological approach with differential scanning calorimetry and isothermal calorimetry. The material, severely deformed by repeated bending, presented an excess of dissociated edge dislocations with a dislocation density amounting to about 8.5·1014 m−2, calculated using a prior model of the authors, together with calorimetric recrystallization trace analysis. The kinetics was found to be ruled by two overlapping mechanisms: diffusion of solute atoms mostly through dislocation pipes in the initial and middle stages of the reaction process, acting together with bulk solute diffusion in these stages and later. Bulk solute diffusion increases as the reaction proceeds, as shown by the increasing values of apparent activation energy in the reaction. The exponent of the Mehl-Johnson-Avrami equation used in the phenomenological description was successfully fitted to a time—temperature-dependent function, increasing in agreement with the apparent activation energy behaviour, as may be expected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. W. Cahn and R. G. Davies, Phil. Mag., 5 (1960) 119.

    Google Scholar 

  2. J. M. Popplewell and J. Crane, Metall. Trans., 2 (1971) 3411.

    Google Scholar 

  3. A. Varschavsky, Mater. Sci. Eng., 89 (1987) 119.

    Google Scholar 

  4. A. Varschavsky, J. Mater. Sci., 26 (1991) 3603.

    Google Scholar 

  5. M. Z. Butt and Z. Rafi, J. Mater. Sci. Letts., 10 (1991) 309.

    Google Scholar 

  6. A. Varschavsky and E. Donoso, Mater. Sci. Eng., 32 (1978) 65.

    Google Scholar 

  7. E. Donoso and A. Varschavsky, Mater. Sci. Eng., 37 (1979) 151.

    Google Scholar 

  8. A. Varschavsky and E. Donoso, Mater. Sci. Eng., 40 (1979) 119.

    Google Scholar 

  9. S. S. Fan, K. Inai, S. Onaka and S. Miura, J. Soc. Mater. Sci. Jpn., 41 (1992) 607.

    Google Scholar 

  10. A. Varschavsky and E. Donoso, Res. Mechanica, 3 (1981) 195.

    Google Scholar 

  11. M. Militzer, W. P. Sun and J. J. Jonas, Acta Metall. Mater., 42 (1994) 133.

    Google Scholar 

  12. M. Z. Butt, Sci. Int., 2 (1990) 257.

    Google Scholar 

  13. F. R. N. Nabarro, Acta Metall., 9 (1990) 161.

    Google Scholar 

  14. A. Varschavsky, Scr. Metall., 9 (1975) 391.

    Google Scholar 

  15. L. P. Kubin, Y. Estrin and C. Perrier, Acta Metall. Mater., 40 (1992) 1037.

    Google Scholar 

  16. C. P. Ling, P. G. McCormick and Y. Estrin, Acta Metall. Mater., 41 (1993) 3323.

    Google Scholar 

  17. P. G. McCormick and P. Ling, Acta Metall. Mater., 43 (1995) 1969.

    Google Scholar 

  18. Y. Brechet and Y. Estrin, Acta Metall. Mater., 43 (1995) 955.

    Google Scholar 

  19. A. Varschavsky and E. Donoso, J. Thermal Anal., 48 (1997) 1229.

    Google Scholar 

  20. A. Varschavsky and E. Donoso, J. Thermal Anal., 50 (1997) 533.

    Google Scholar 

  21. A. Varschavsky and E. Donoso, Mater. Letts., 31 (1997) 239.

    Google Scholar 

  22. L. Deléhouzée and A. Deruyttere, Acta Metall., 15 (1967) 727.

    Google Scholar 

  23. A. H. Cottrell and B. A. Bilby, Proc. Roy. Soc. Lond., B62 (1949) 229.

    Google Scholar 

  24. N. Louat, Scripta Metall., 15 (1981) 1167.

    Google Scholar 

  25. J. D. Eshelby, In Physics of Metals, Defects. P. B. Hirsch, ed., Cambridge University Press, Vol. 2, 1975, p. 1.

  26. I. Saxl, Czech J. Phys., 148 (1964) 381.

    Google Scholar 

  27. M. T. Hopkin, H. Pursey and M. F. Markham, Z. Metallk., 61 (1970) 535.

    Google Scholar 

  28. H. W. King, J. Mater. Sci., 1 (1966) 79.

    Google Scholar 

  29. W. B. Pearson, A Handbook of Lattice Spacing and Structures of Metals, Pergamon Press, London 1958, p. 597.

    Google Scholar 

  30. P. Cotterill and P. R. Mould, Recrystallization, Surrey University Press, 1976, p. 35.

  31. Recrystallization of Metallic Materials. Ed. F. Haessner, Dr. Riederer Verlag, Stuttgart 1978, p. 137.

    Google Scholar 

  32. I. Dutte and D. L. Bourell, Acta Metall. Mater., 38 (1990) 2041.

    Google Scholar 

  33. A. M. Brown and M. S. Ashby, Acta Metall., 28 (1980) 1085.

    Google Scholar 

  34. A. Varschavsky and E. Donoso, J. Mater. Sci., 21 (1986) 3873.

    Google Scholar 

  35. D. L. Becke, I. Uzongi and F. J. Kedves, Phil. Mag. A, 44 (1981) 983.

    Google Scholar 

  36. D. L. Becke, G. Erdélyi and F. J. Kedves, J. Phys. Chem. Solids, 42 (1981) 163.

    Google Scholar 

  37. F. Springer and Ch. Schwink, Scripta Metall. Mater., 25 (1991) 2739.

    Google Scholar 

  38. F. R. Brotzen and A. Seeger, Acta Metall., 37 (1989) 2985.

    Google Scholar 

  39. J. Schlipf, Scripta Metall. Mater., 29 (1993) 287.

    Google Scholar 

  40. A. Kalk, A. Nortmann and Ch. Schwink, Phil. Mag. A, 72 (1995) 1239.

    Google Scholar 

  41. M. A. Morris, T. Lipe and D. G. Morris, Scripta Mater., 34 (1996) 1337.

    Google Scholar 

  42. C. P. Ling, P. G. McCormick and Y. Estrin, Acta Metall. Mater., 41 (1993) 3323.

    Google Scholar 

  43. P. G. McCormick and P. Ling, Acta Metall. Mater., 43 (1995) 1969.

    Google Scholar 

  44. J. Warren and A. D. Jackson, Scripta Mater., 34 (1996) 787.

    Google Scholar 

  45. M. P. Trujillo, A. Orozco, M. Casas-Ruiz, R. A. Ligero and R. Jiménez Garay, Mater. Letts., 24 (1995) 287.

    Google Scholar 

  46. A. Varschavsky and E. Donoso, Mater. Sci. Eng. (in press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Varschavsky, A., Donoso, E. Kinetics of Solute Flow to Partial Dislocation in Cu–3.4 At.% Sb. Journal of Thermal Analysis and Calorimetry 57, 607–622 (1999). https://doi.org/10.1023/A:1010157201192

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010157201192

Navigation