Skip to main content
Log in

Microgravimetric Apparatus for Sulfidation in Pure Sulfur Vapour at High Temperatures

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A thermobalance for studies of the high-temperature sulfidation of metals and alloys is described. This apparatus permits the determination of mass changes in a sulfidized sample as a function of temperature and sulfur vapour pressure. The main parts of this apparatus are the container with liquid sulfur and the reaction chamber with the quartz space and quartz spiral. All parts of the apparatus are equipped with thermostating furnaces. The temperature within the apparatus is controlled with an accuracy of 0.5 K. The quartz spiral (diameter 0.2 mm), consisting of 50 coils (diameter 30 mm), permits the recording of mass changes in the sample (about 200 mg) with an accuracy of 10-5 g.

Besides heterogeneous kinetics measurements, it has been shown that the self- and chemical diffusion coefficients or the deviation from stoichiometry of the metal sulfides can also be studied as functions of temperature and sulfur pressure by means of equilibration measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Kofstad, 'High Temperature Corrosion', Elsevier, London 1988.

    Google Scholar 

  2. S. Mrowec and K. Przybylski, High Temp. Mater. Processes, 6 (1984) 1.

    CAS  Google Scholar 

  3. S. Mrowec and K. Przybylski, Oxid. Met., 23 (1984) 107.

    Article  Google Scholar 

  4. D. B. Meadoweroft and M. J. Manning, 'Corrosion Resistant Materials for Coal Conversion System', Applied Science, London 1983.

    Google Scholar 

  5. Z. Grzesik, H. Habazaki, K. Hashimoto and S. Mrowec, Corrosion Science, 36 (1994) 1499.

    Article  Google Scholar 

  6. Z. Grzesik, K. Hashimoto and S. Mrowec, Solid State Phenomena, 41 (1995) 215.

    Article  CAS  Google Scholar 

  7. S. Mrowec, M. Danielewski and A. Stoklosa, Oxid. Metals, 11 (1977) 355.

    Article  CAS  Google Scholar 

  8. M. Danielewski, Oxid. Metals, 25 (1986) 51.

    Article  CAS  Google Scholar 

  9. K. Nishida, T. Narita, T. Tani and G. Saski, Oxid. Metals, 14 (1980) 65.

    Article  CAS  Google Scholar 

  10. M. Perez and J. P. Larpin, Oxid. Metals, 21 (1984) 299.

    Article  CAS  Google Scholar 

  11. J. Rasneur and N. Dherbomez, Compt. Rend. Acad. Sci. Paris Ser. II, 292 (1981) 593.

    CAS  Google Scholar 

  12. H. Rau, J. Phys. Chem. Solids, 39 (1978) 339.

    Article  CAS  Google Scholar 

  13. M. Danielewski, 'Kinetyka i mechanizm siarkowania manganu oraz struktura defektów i wlasności transportowe siarczku manganawego', Zeszyty Naukowe AGH, nr 1021, Kraków 1985.

    Google Scholar 

  14. C. Wagner, 'Diffusion and High Temperature Oxidation of Metals, Atom Movements, ASM, Clevland 1951.

    Google Scholar 

  15. K. Fueki and J. B. Wagner, J. Electrochem. Soc., 112 (1965) 384.

    CAS  Google Scholar 

  16. M. Danielewski, S. Mrowec and A. Stokłosa, Oxid. Metals, 17 (1982) 77.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grzesik, Z., Danielewski, M. & Mrowec, S. Microgravimetric Apparatus for Sulfidation in Pure Sulfur Vapour at High Temperatures. Journal of Thermal Analysis and Calorimetry 55, 551–558 (1999). https://doi.org/10.1023/A:1010154121328

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010154121328

Navigation