Skip to main content
Log in

Investigations of the Sub-Ambient Transitions in Frozen Sucrose by Modulated Differential Scanning Calorimetry (MDSC®)

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

40% w/w sucrose/water solutions were analyzed by Modulated Differential Scanning Calorimetry [1] in the sub-ambient temperature region. At these temperatures, the solutions exhibit a complex, two-step thermal event. The lower-temperature event is believed to be the glass transition of the amorphous sucrose phase. The nature of the higher-temperature event is the subject of controversy. This event has been shown to have distinct second-order characteristics, and as such is believed to be a second Tg. Others feel that this event is the onset of melting. The temperature region between these events contains a devitrification exotherm. Through the use of MDSC, both in scanning and stepwise quasi-isothermal modes, improved sensitivity and resolution of MDSC provides new insight into the nature of these transitions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Modulated DSC® and MDSC® are terms which describe technology invented by Dr. Mike Reading of ICI Paints (Slough, UK) and patented by TA Instruments (U.S. Patent Nos. B1 5,224,775; 5,248,199; 5,335,993; 5,346,306; 5,439,291; 5,474,385) (European Patent No. 0559362) (Canadian Patent No. 2,089,225).

  2. For a list of literature publications involving MDSC, see TA Instruments publication TN-33.

  3. H. Levine and L. Slade, Carbohydr. Polym., 6 (1986) 213.

    Google Scholar 

  4. H. Levine and L. Slade, in V. R. Harwalker and C. Y. Ma (eds.), Thermal Analysis of Foods, Elsevier Applied Sciences, New York, (1990) 221.

    Google Scholar 

  5. Y. H. Roos, M. Karel and J. L. Kokini, Food Technology, 95–108, November, 1996 and references therein.

  6. M. E. Sahagian and H. D. Goff, Thermochim. Acta, 246 (1994) 271, and references therein.

    Google Scholar 

  7. M. J. Izzard, S. Ablett, P. J. Lillford, V. L. Hill and I. F. Groves, J. Thernal Anal., 47 (1996) 1407.

    Google Scholar 

  8. G. Blond and D. Simatos, Thermochim. Acta, 175 (1991) 239.

    Google Scholar 

  9. E. C. A. van Winden, H. Talsma and D. J. A. Crommelin, Ph.D. Thesis, Chapter 5, Freeze-Drying of Liposomes. Preservation of Liposomes During the Freeze-Drying Process and Their Stability in the Freeze-Dried Stare, 1996.

  10. H. D. Goff, Pure and Appl. Chem., 67 (1995) 1801.

    Google Scholar 

  11. S. Sauerbrunn and P. Gill, Amer. Lab., 25 (1993) 54.

    Google Scholar 

  12. P. S. Gill, S. R. Sauerbrunn and M. Reading, J. Thermal Anal., 40 (1993) 931.

    Google Scholar 

  13. S. R. Sauerbrunn, B. S. Crowe and M. Reading, Proc. 21st NATAS Conf., 1992, p. 137.

  14. S. Sauerbrunn, B. Crowe and M. Reading, Amer. Lab., 24 (1992) 44.

    Google Scholar 

  15. M. Reading, A. Luget and R. Wilson, Thermochim. Acta, 238 (1994) 295.

    Google Scholar 

  16. D. R. Kamm, B. S. Crowe and M. Reading, Proc. 9th Natl. Symp. on Thermal Anal., 1993, p. 19.

  17. B. Wunderlich and A. Bollet, Proc. 24th NATAS Conference, 1995, p. 136.

  18. A. Boller, ATHAS Laboratory Eighth4 Report, 1994, p. 4.

  19. N. Buckman, Chemistry in Australia, 1993, p. 666.

  20. S. R. Sauerbrunn and R. L. Blaine, Proc. 23rd NATAS Conf., 1994.

  21. S. R. Sauerbrunm, P. S. Gill and J. A. Foreman, Proc. 23rd NATAS Conf., 1994.

  22. M. Reading, D. Elliott and V. Hill, Proc. 21st NATAS Conf., 1992, p. 145.

  23. P. S. Gill and S. R. Aubuchon, J. Thermal Anal., 49 (1996) 1039.

    Google Scholar 

  24. S. R. Sauerbrunn and L. C. Thomas, Proc. 23rd NATAS Conf., 1994.

  25. M. Reading, Trends in Polymer Science, 1 (1993) 248.

    Google Scholar 

  26. A. A. Lacey, C. Nikolopoulos and M. Reading, Thermochim. Acta, submitted, Jan. 1996.

  27. I. Hatta, Thermochim. Acta, 272 (1996) 49.

    Google Scholar 

  28. I. Hatta, Jpn. J. Appl. Phys., 33 (1994) L686.

    Google Scholar 

  29. T. Ozawa and K. Kanari, Thermochim. Acta, 253 (1995) 183.

    Google Scholar 

  30. B. Wunderlich, A. Boller, I. Okazaki and S. Kreitmeur, Thermochim. Acta, 282/283 (1996) 143.

    Google Scholar 

  31. B. Wunderlich, Y. Jin and A. Boller, Thermochim. Acta, 238 (1994) 277.

    Google Scholar 

  32. B. Wunderlich, J. Thermal Anal., 48 (1997) 207.

    Google Scholar 

  33. L. C. Thomas, A. Boller, I. Okazaki and B. Wunderlich, Thermochim. Acta, 291 (1997) 85.

    Google Scholar 

  34. S. R. Aubuchon, P. Chin and R. L. Hassel, Proc. 25th NATAS Conf., 1997, p. 78.

  35. S. R. Aubuchon, manuscript in preparation.

  36. K. A. Q. O'Reilly and B. Cantor, Proc. R. Soc. Lond. A, 452 (1996) 2141.

    Google Scholar 

  37. Freeze-concentration can also be accomplished by annealing at an isothermal temperature near the T g.

  38. I. Okazaki and B. Wunderlich, Macromol. Rapid Commun., 18 (1997) 313.

    Google Scholar 

  39. I. Okazaki and B. Wunderlich, Macromolecules, 30 (1997) 1758.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aubuchon, S.R., Thomas, L.C., Theuerl, W. et al. Investigations of the Sub-Ambient Transitions in Frozen Sucrose by Modulated Differential Scanning Calorimetry (MDSC®). Journal of Thermal Analysis and Calorimetry 52, 53–64 (1998). https://doi.org/10.1023/A:1010149804282

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010149804282

Navigation