Skip to main content
Log in

Kinetic Study on Pyrolysis of Extracted Oil Palm Fiber. Isothermal and non-isothermal conditions

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Pyrolysis of extracted oil palm fibers under isothermal and non-isothermal conditions was carried out in a thermogravimetric analyzer. Isothermal curves showed that increasing pyrolysis temperature resulted in a faster pyrolysis and a higher conversion of oil palm fibers into gaseous products. Raw material sizes (below 1.0 mm) had insignificant effects on the isothermal pyrolysis, but the fibers with a size fraction of 1.0 to 2.0 mm resulted in a lesser conversion. Two-step reactions were found in the non-isothermal pyrolysis as evidenced by the presence of two peaks in the derivative thermogravimetry curves. Raw material sizes had no obvious effects on the temperature at which the maximum rate of pyrolysis occurred, but affected the rate of sample mass loss. For the low and high temperature regimes, a three-dimensional diffusion mechanism and a first-order of reaction mechanism respectively were used to describe the non-isothermal pyrolysis kinetics of extracted oil palm fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. G. Yeoh, A. Z. Idrus and K. S. Ong, ASEAN J. Sci. Technol. Develop., 5 (1988) 1.

    Google Scholar 

  2. A. V. Bridgewater and J. L. Kuester, (Eds), 'Research in Thermochemical Biomass Conversion', Elsevier Applied Science, London 1988.

    Google Scholar 

  3. G. Grassi, G. Gosse and G. dos Santos, (Eds), 'Biomass for Energy and Industry', Elsevier Applied Science, London 1990.

    Google Scholar 

  4. B. Wunderlich, Thermal Analysis, Academic Press, New York 1990.

    Google Scholar 

  5. C. A. Koufopanos, G. Maschio and A. Lucchesi, The Canadian J. Chem. Eng., 67 (1989) 75.

    Article  CAS  Google Scholar 

  6. V. Cozzani, L. Petarca and L. Tognotti, Fuel, 74 (1995) 903.

    Article  CAS  Google Scholar 

  7. M. J. Antal Jr. and G. Várhegyi, Ind. and Eng. Chem. Res., 34 (1995) 703.

    Article  CAS  Google Scholar 

  8. D. Dollimore, W. E. Brown and A. K. Galway, 'Comprehensive Chemical Kinetics', Vol. 22, Bamford, C. H. and Tipper, C. F. (Eds), Elsevier, Amsterdam 1980.

    Google Scholar 

  9. M. Reading, D. Dollimore and R. Whitehead, J. Thermal Anal., 37 (1991) 2165.

    Article  CAS  Google Scholar 

  10. A. Ersoy-Mericboyu, S. Kucukbayrak and B. Durus, J. Thermal Anal., 39 (1993) 707.

    CAS  Google Scholar 

  11. S. S. Sofer and O. R. Zaborsky, (Eds), 'Biomass Conversion Processes for Energy and Fuels', Plenum Press, New York and London 1981.

    Google Scholar 

  12. T. B. Reed, (Eds), 'Biomass Gasification: Principles and Technology', Noyes Data Corporation, New Jersey 1981.

    Google Scholar 

  13. P. T. Williams and S. Besler, Fuel, 72 (1993) 151.

    Article  CAS  Google Scholar 

  14. D. L. Pyle and C. A. Zaror, Chem. Eng. Sci., 39 (1984) 147.

    Article  CAS  Google Scholar 

  15. A. H. Shamsuddin and P. T. Williams, J. of the Inst. of Energy, 65 (1992) 31.

    Google Scholar 

  16. P. Raman, W. P. Walawender, L. T. Fan and J. A. Howell, Ind. Eng. Chem. Process Res. Dev., 20 (1981) 630.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, J., Lua, A.C. Kinetic Study on Pyrolysis of Extracted Oil Palm Fiber. Isothermal and non-isothermal conditions. Journal of Thermal Analysis and Calorimetry 59, 763–774 (2000). https://doi.org/10.1023/A:1010149619877

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010149619877

Navigation