Phase Modification of Ammonium Nitrate by Potassium Salts

  • C. Oommen
  • S. R. Jain


Modification of the room temperature phase (IV-III) of ammonium nitrate (AN) has been attempted using a variety of potassium salts namely, KF, KCl, KI, KNO3, K2CO3, K2SO4, KSCN and K2Cr2O7. No phase transition was observed when AN containing 1–2% by mass of these potassium salts is heated from room temperature (25°C) onwards in DTA and DSC scans, but the linear expansion due to phase transition was still observable in TMA measurements. Complete arrest of the linear expansion occurs only when a higher concentration of the additive is used. Similarly, in thermal cycling experiments, complete phase modification in the temperature range -80 to 100°C occurs only with a higher percentage of the potassium salt. The extent of modification, however, is found to be dependent both on the concentration, and the type of the anion. Potassium dichromate when used as an additive modifies the phase as well as the decomposition pattern of AN.

ammonium nitrate phase modification potassium salts 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. B. Hendricks, E. Posnjak and F. C. Kracek, J. Am. Chem. Soc., 54 (1932) 2766.CrossRefGoogle Scholar
  2. 2.
    G. Rasolic, Lj. Milanovic and S. Jovanovic, J. Thermal Anal., 34 (1988) 1195.CrossRefGoogle Scholar
  3. 3.
    E. Jóna, T. Sramko and D. Nagy, J. Thermal Anal., 27 (1983) 37.CrossRefGoogle Scholar
  4. 4.
    E. Kestila and J. Valkonan, Thermochim. Acta, 214 (1993) 305.CrossRefGoogle Scholar
  5. 5.
    I. Dellien, Thermochim. Acta, 55 (1982) 181.CrossRefGoogle Scholar
  6. 6.
    L. Langfelderova and P. Ambrovic, Thermochim. Acta, 56 (1982) 385.CrossRefGoogle Scholar
  7. 7.
    T. Sramko and E. Joan, Thermochim. Acta, 92 (1985) 731.CrossRefGoogle Scholar
  8. 8.
    R. V. Coates and G. D. Woodard, J. Chem. Soc., 381 (1965) 2135.CrossRefGoogle Scholar
  9. 9.
    A. N. Campbell and A. J. R. Campbell, Canadian J. Research, 24B (1946) 93.Google Scholar
  10. 10.
    M. Q. Brewster and T. A. Sheridan, Final report, submitted to Thiocol Corporation, July 1990.Google Scholar
  11. 11.
    A. Deimling, W. Engel and N. Eisenreich, J. Thermal Anal., 38 (1992) 843.CrossRefGoogle Scholar
  12. 12.
    N. Eisenrich and W. Engel, J. Thermal Anal., 35 (1989) 577.CrossRefGoogle Scholar
  13. 13.
    W. Engel and K. Menke, Defence Science Journal, 46 (1996) 311.Google Scholar
  14. 14.
    C. N. R. Rao, B. Prakash and M. Natrajan, Crystal structure transformation in Inorganic nitrites, nitrates and carbonates, National Bureau of Standards, NSRDS-NNS53, May 1975.Google Scholar
  15. 15.
    W. Engel, Propellants Explos. Pyrotechnics, 10 (1985) 84.CrossRefGoogle Scholar
  16. 16.
    W. Engel, N. Eisenreich and A. Deimling, Proceedings of the 24th An. Conf. of ICT, 1993, p. 3.Google Scholar
  17. 17.
    I. B. Mishra, US patent, 4552, 736 (1986).Google Scholar
  18. 18.
    A. K. Mehrotra and M. I. Lee, US patent 5098683, CA, 117, 72668, (1992).Google Scholar
  19. 19.
    W. Engel, Report (1989), CA, 113, (1990) 214884.Google Scholar
  20. 20.
    S. Skaribas, T. C. Vaimakis and P. J. Pomonis, Thermochim. Acta, 158 (1990) 235.CrossRefGoogle Scholar
  21. 21.
    Powder Diffraction File, compiled by JCPDS, International Center for diffraction data, Philadelphia, PA, USA (1990).Google Scholar
  22. 22.
    G. Rasulic, S. Jovanovic and Lj. Milanovic, J. Thermal Anal., 30 (1985) 65.CrossRefGoogle Scholar
  23. 23.
    J. Morand, Ann. Chim. (France), 10 (1955) 1018.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • C. Oommen
    • 1
  • S. R. Jain
    • 1
  1. 1.Department of Aerospace EngineeringIndian Institute of ScienceBangaloreIndia

Personalised recommendations