Skip to main content
Log in

Thermal and Spectral Features of Yttrium and Heavy Lanthanide Complexes with 2,4-dimethoxybenzoic Acid

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The complexes of yttrium and heavy lanthanides with 2,4-dimethoxybenzoic acid of the formula: Ln(C9H9O4)3×nH2O, where Ln=Tb(III), Dy(III), Ho(III), Er(III), Tm(III), Yb(III), Lu(III) and Y(III), n=2 for Tb(III), Dy(III), Ho(III), Er(III), Tm(III) and Y(III), and n=0 for Yb(III) and Lu(III), have been synthesized and characterized by elemental analysis, IR spectroscopy, themogravimetric studies, as well as X–ray and magnetic susceptibility measurements. The complexes have a colour typical of Ln 3+ salts (Tb, Dy, Tm, Yb, Lu, Y – white, Ho – cream, Er – pink). The carboxylate group in these complexes is a bidentate, chelating ligand. The compounds form crystals of various symmetry. 2,4-Dimethoxybenzoates of Yb(III) and Lu(III) are isostructural. 2,4-Dimethoxybenzoates of yttrium and heavy lanthanides decompose in various ways on heating in air to 1173 K. The hydrated complexes first lose water to form anhydrous salts and then decompose to the oxides of respective metals. The ytterbium and lutetium 2,4-dimethoxybenzoates decompose in one step to form Yb2O3 and Lu2O3.

The solubilities of the 2,4-dimethoxybenzoates of yttrium and heavy lanthanides in water and ethanol at 293 K are of the order of: 10–3 and 10–3 –10–2 mol dm–3, respectively. The magnetic moments for the complexes were determined over the range of 77–298 K. They obey the Curie–Weiss law. The results show that there is no influence of the ligand field on the 4f electrons of lanthanide ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. V. Zelentsov, Zh. Neorg. Khim, 13 (1968) 591.

    CAS  Google Scholar 

  2. Gmelin Handbook of Inorganic Chemistry, Springer-Verlag, Berlin 1984.

  3. W. Ferenc and A. Walków-Dziewulska, J. Serb. Chem. Soc., 65 (2000) 27.

    CAS  Google Scholar 

  4. W. W. Wendlandt and J. A. Hoiberg, Anal. Chim. Acta, 29 (1963) 539.

    Article  CAS  Google Scholar 

  5. Beilsteins Handbuch der organishen Chemie, Springer-Verlag, Berlin 1971.

  6. D. R. Ellwood and K. Hitesh, Pharmacopeia, 98 (1999) 15.

    Google Scholar 

  7. Z. Marczenko, Spektrofotometryczne oznaczenie pierwiastków, PWN, Warszawa 1979.

    Google Scholar 

  8. Z. Marczenko and M. Balcerzak, Spektrofotometryczne metody w analizie nieorganicznej, PWN, Warszawa 1998.

    Google Scholar 

  9. B. N. Figgs and R. S. Nyholm, J. Chem. Soc., (1958) 4190.

  10. E. König, Magnetic Properties of Coordination and Organometallic Transition Metal Compounds, Springer-Verlag, Berlin 1966.

    Google Scholar 

  11. K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, John Wiley and Sons, Toronto 1968.

    Google Scholar 

  12. K. Nakamoto and P. J. McCarthy, Spectroscopy and Structure of Metal Chelate Compounds, John Wiley and Sons, New York 1968.

    Google Scholar 

  13. R. C. Mehrotra and R. Bohra, Metal Carboxylates, Academic Press, London 1983.

    Google Scholar 

  14. A. K. Brisdon, Inorganic Spectroscopic Methods, Oxford University Press, Oxford 1998.

    Google Scholar 

  15. L. M. Harwood and T. D. W Claridge, Introduction to Organic Spectroscopy, Oxford University Press, Oxford 1999.

    Google Scholar 

  16. L. J. Bellamy, The Infrared Spectra of Complex Molecules, Chapman and Hill, London 1975.

    Google Scholar 

  17. K. Burger, Coordination Chemistry: Experimental Methods, Akadémiai Kiadó, Budapest 1973.

    Google Scholar 

  18. B. S. Manhas and A. K. Trikha, J. Indian Chem. Soc., 59 (1982) 315.

    CAS  Google Scholar 

  19. E. Lagiewka and Z. Bojarski, Rentgenowska analiza strukturalna, PWN, Warszawa 1988.

    Google Scholar 

  20. P. Pascal, Noveau Traité de Chimie Minérale, Maon et cie, Paris 1959.

  21. M. Van Meerche and J. Feneau-Dupont, Introduction la Crystallographie et la Chimie Structrale, OYEZ Leuven, Paris 1976.

    Google Scholar 

  22. D. N. Todor, Thermal Analysis of Minerals, Abacus Press, Tunbridge Wells, Kent 1976.

    Google Scholar 

  23. F. Paulik, Special Trends in Thermal Analysis, Wiley, Chichester 1995.

    Google Scholar 

  24. A. V. Nikolaev, V. A. Logvienko and L. J. Myachina, Thermal Analysis, Vol. 2, Academic Press, New York 1989.

    Google Scholar 

  25. B. Singh, B. V. Agarwala, P. L. Mourya and A. K. Dey, J. Indian Chem. Soc., 59 (1992) 1130.

    Google Scholar 

  26. Ch. A. Cherchas and T. P. Jezierskaja, Izv. Akad. Nauk SSSR, 1 (1977) 45.

    Google Scholar 

  27. C. J. O'Conner, Progress in Inorganic Chemistry, Vol. 29, Wiley, New York 1982.

    Google Scholar 

  28. C. Benelli, A. Caneschi, D. Gatteschi, J. Laugier and P. Rey, Angew. Chem., 26 (1989) 913.

    Google Scholar 

  29. C. Benelli, A. Caneschi, D. Gatteschi, J. Laugier and L. Pardi, Inorg. Chem., 28 (1989) 275.

    Article  CAS  Google Scholar 

  30. C. Benelli, A. Caneschi, D. Gatteschi, J. Laugier, L. Pardi and P. Rey, Inorg. Chem., 28 (1989) 320.

    Google Scholar 

  31. S. P. Sinha, Systematics and Properties of the Lanthanides, Reidel, Dordrecht 1983.

    Google Scholar 

  32. D. J. Karraker, J. Chem. Educ., 47 (1970) 424.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferenc, W., Walków-Dziewulska, A. Thermal and Spectral Features of Yttrium and Heavy Lanthanide Complexes with 2,4-dimethoxybenzoic Acid. Journal of Thermal Analysis and Calorimetry 63, 865–877 (2001). https://doi.org/10.1023/A:1010120911658

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010120911658

Navigation