Skip to main content
Log in

Thermogravimetric Evidence of Cobalt or Manganese Isomorphously Substituted into a Zeolite

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Pure silica zeolite ZSM-5 has been synthesised in a slightly acidic aqueous fluoride medium which produces the protonated form of the zeolite ZSM-5 [1]. Tetrahalometallate [2] species of cobalt and manganese have been synthesised and increasing mole fractions incorporated into the zeolite synthesis gel. The products have been analysed and characterised using simultaneous thermogravimetric-derivative thermogravimetric analysis (TG-DTG). The thermal decomposition, under nitrogen of the associated tetraethylammonium (TEA+) and tetrapropylammonium (TPA+) cations occluded within the zeolite channels is indicative and characteristic of the incorporation of the heteroatoms into the zeolitic framework. Analysis by X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray fluorescence (XRF), and Fourier transform infrared spectroscopy (FTIR) has confirmed the reliability of thermogravimetric (TG) and derived thermogravimetric analysis (DTG) as a diagnostic tool.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Kessler, J. Patarin and C. Schott Darie, in Advanced Zeolite Science and Applications. Vol. 85 in Studies in Surface Science and Catalysis, Eds: J. C. Joanne et al., 1995, p. 75-113.

  2. N. S. Gill and F. B. Taylor, Inorganic Synthesis, 36 (1969) 136.

    Google Scholar 

  3. Y. Li and J. N. Armor, Applied Catalysis B: Environmental, 2 (1993) 239.

    Article  CAS  Google Scholar 

  4. T. Sun, L. M. Trudeau and J. Y. Ying, J. Physical Chemistry, 100 (1996) 13662.

    Article  CAS  Google Scholar 

  5. Y. Li and N. J. Armour, Applied Catalysis Letters B: Environmental, 1 (1992) L31-L34.

    Article  CAS  Google Scholar 

  6. G. Debas, A. Gourgue, J. B. Nagy and G. De Clippeleir, Zeolites, 5 (1985) 377.

    Article  Google Scholar 

  7. Kuei-Jung Chao, Jia-Ching Lin, Y. Wang and G. H. Lee, Zeolites, 6 (1986) 35.

    Article  CAS  Google Scholar 

  8. M. Soulard, S. Bilger, H. Kessler and J. L. Guth, Zeolites, 7 (1987) 463.

    Article  CAS  Google Scholar 

  9. A. Tavolaro, J. Thermal Anal., 47 (1996) 171.

    Article  CAS  Google Scholar 

  10. G. Fierro, M. A. Eberhardt, M. Houalla, D. M. Hercules and W. K. Hall, J. Physical Chemistry, 100 (1996) 8468.

    Article  CAS  Google Scholar 

  11. C. I. Round, C. D. Williams and C. V. A. Duke, Chemical Communications, 1997, p. 1849-1850.

  12. R. Szostak, Handbook of Molecular Sieves, Van-Nostrand Reinhold, New York 1992, p. 518-528.

    Google Scholar 

  13. J. El Hage-Al Asswad, N. Dewaele, J. B. Nagy, R. A. Hubert, Z. Gabelica, E. G. Derouanne, F. Crea, R. Aiello and A. Nastro, Zeolites, 8 (1988) 221.

    Article  CAS  Google Scholar 

  14. J. Dwyer, J. Zhao and D. Rawlence, Proceedings of the 9th International Zeolite Conference, Montreal, Ed. R. Von Ballmoose, Butterworth Heineman Press, 1992, p. 155-160.

  15. W. M. Meier, D. H. Olson and C. H. Baerlocher, Atlas of Zeolite Structure Types. Elsvier Amsterdam, 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Round, C.I., Williams, C.D. & Duke, C.V.A. Thermogravimetric Evidence of Cobalt or Manganese Isomorphously Substituted into a Zeolite. Journal of Thermal Analysis and Calorimetry 54, 901–911 (1998). https://doi.org/10.1023/A:1010116625710

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010116625710

Navigation