Skip to main content
Log in

Thermal Analysis of Semi-Dilute Hyaluronan Solutions

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The freezing and melting of water in semi-dilute (0.5–3.0%) solutions of the polysaccharide hyaluronanhave been investigated by modulated differential scanning calorimetry.

High molecular weight hyaluronan inhibited nucleation of ice and significantly depressed thefreezing temperature in a dynamic scan conducted at −3.0°C min−1. Low molecular weight hyaluronan had a weaker and more variable effect on nucleation. Theeffects on nucleation, especially by the high molecular weight hyaluronan, are attributed tothe influence of a hyaluronan network on the formation of critical ice nuclei.

Both high and low molecular weight hyaluronan reduced the melting temperature of ice by 0.4–1.1°C, depending on concentration. The enthalpy change associated with this transitionwas significantly reduced. If all of the enthalpy difference is attributed to the presence of non-freezing water, approximately 3.65 g water/g hyaluronan would be non-freezing. This result appears incompatible with published studies on hyaluronan samples of low water content. An alternative hypothesis and quantitative approach to analysis of the data are suggested. The data are interpreted in terms of a small amount of non-freezing water, and amuch larger boundary layer of water surrounding hyaluronan chains, which has slightly altered thermodynamic properties relative to those of bulk water. The boundary layer water behaves similarly to water trapped in small pores in solid materials and hydrogels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. D. Comper and T. C. Laurent, Physiol. Rev., 58 (1978) 255.

    Google Scholar 

  2. F. A. Meyer, Biochim. Biophys. Acta, 755 (1983) 388.

    Google Scholar 

  3. T. C. Laurent, ‘Chemistry and Molecular Biology of the Extracellular Matrix’, E. A. Balazs, Ed., Academic Press, New York 1970, pp. 703-732.

    Google Scholar 

  4. T. C. Laurent, Biophys. Chem., 57 (1995) 7.

    Google Scholar 

  5. E. A. Balazs, Fed. Proc., 25 (1966) 1817.

    Google Scholar 

  6. D. A. Gibbs, E. W. Merrill, K. A. Smith and E. A. Balazs, Biopolymers, 6 (1968) 777.

    Google Scholar 

  7. Y. Suzuki and H. Uedaira, Bull. Chem. Soc. Jpn., 43 (1970) 1892.

    Google Scholar 

  8. A. Davies, J. Gormally, E. Wyn-Jones, D. J. Wedlock and G. O. Phillips, Biochem. J., 213 (1983) 363.

    Google Scholar 

  9. H. Yoshida, T. Hatakeyama and H. Hatakeyama, ‘Cellulose’, J. F. Kennedy, G. O. Phillips, P. A. Williams, Eds., Horwood, Chichester, UK 1990, pp. 305-310.

    Google Scholar 

  10. H. N. Joshi and E. M. Topp, Int. J. Pharm., 80 (1992) 213.

    Google Scholar 

  11. H. Yoshida, T. Hatakeyama and H. Hatakeyama, J. Thermal Anal., 40 (1993) 483.

    Google Scholar 

  12. N. Jouon, M. Rinaudo, M. Milas and J. Desbrières, Carbohydr. Polym., 26 (1995) 69.

    Google Scholar 

  13. L. Picullel, B. Lindman and R. Einarsson, Biopolymers, 23 (1984) 1683.

    Google Scholar 

  14. C. R. Ethier, Biorheology, 23 (1986) 99.

    Google Scholar 

  15. H. D. Middendorf, D. Di Cola, F. Cavatorta, A. Deriu and C. J. Carlile, Biophys. Chem., 53 (1994) 145.

    Google Scholar 

  16. F. A. Bettelheim and N. Popdimirova, Curr. Eye Res., 11 (1992) 411.

    Google Scholar 

  17. H. G. Lee and M. K. Cowman, Anal. Biochem., 219 (1994) 278.

    Google Scholar 

  18. H. Bothner, T. Waaler and O. Wik, Int. J. Biol. Macromol., 10 (1988) 287.

    Google Scholar 

  19. E. A. Balazs, ‘The Amino Sugars’, Vol. 2A, E. A. Balazs and R. W. Jeanloz, Eds., Academic Press, New York 1965, pp. 401-460.

    Google Scholar 

  20. M. K. Cowman, J. Liu, M. Li, D. M. Hittner and J. S. Kim, ‘The Chemistry, Biology, and Medical Applications of Hyaluronan and its Derivatives’, T. C. Laurent, Ed., Portland Press, London 1998, pp. 17-24.

    Google Scholar 

  21. Y. P. Handa, M. Zakrzewski and C. Fairbridge, J. Phys. Chem., 96 (1992) 8594.

    Google Scholar 

  22. K. F. Arndt and P. Zander, Colloid Polym. Sci., 268 (1990) 806.

    Google Scholar 

  23. R. L. Cleland, Biopolymers, 18 (1979) 2673.

    Google Scholar 

  24. J. C. Benegas, A. Di Blas, S. Paoletti and A. Cesàro, J. Thermal Anal., 38 (1992) 2613.

    Google Scholar 

  25. F. X. Quinn, E. Kampff, G. Smyth and V. J. McBrierty, Macromol., 21 (1988) 3191.

    Google Scholar 

  26. T. W. Schenz, B. Israel and M.A. Rosolen, ‘Water Relationships in Foods’, H. Levine and L. Slade, Eds., Plenum Press, New York 1991, pp. 199-214.

    Google Scholar 

  27. S. Takigami, M. Takigami and G. O. Phillips, Carbohydr. Polym., 22 (1993) 153.

    Google Scholar 

  28. L. Bosio, G. P. Johari, M. Oumezzine and J. Teixeira, Chem. Phys. Lett., 188 (1992) 113.

    Google Scholar 

  29. A. Davies, J. Gormally, E. Wyn-Jones, D.J. Wedlock and G. O. Phillips, Int. J. Biol. Macromol., 4 (1982) 436.

    Google Scholar 

  30. M. K. Cowman, M. Li and E. A. Balazs, Biophys. J., 75 (1998) 2030.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. K. Cowman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, J., Cowman, M.K. Thermal Analysis of Semi-Dilute Hyaluronan Solutions. Journal of Thermal Analysis and Calorimetry 59, 547–557 (2000). https://doi.org/10.1023/A:1010114213475

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010114213475

Navigation