Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 53, Issue 3, pp 717–735 | Cite as

A Novel Thermo-Optical Measuring System for the in situ Study of Sintering Processes

  • F. Raether
  • R. Hofmann
  • G. Müller
  • H. J. Sölter
Article

Abstract

A novel thermo-optical measuring system (TOM) is described, which is able to monitor simultaneously and in situ thermal and optical properties of materials during the process of sintering. These are thermal diffusivity, heat capacity, thermal conductivity, transfer of heat radiation and scattering of light. Additionally, the geometric shrinkage is recorded by a non-contact optical dilatometer. The system has been designed for an efficient optimization of time-temperature-atmosphere cycles in sintering processes. Therefore, in the construction of the TOM system transferability of process parameters to other sintering furnaces is an important requirement. Due to this, compromises have been necessary in the layout of the measuring methods. Nevertheless, a high resolution was achieved for the distinction of different sintering states. Besides dilatometry, thermal diffusivity measurement by a laser-flash technique is a promising tool for the in situ monitoring of changes in microstructure during sintering.

ceramics in situ measurements sintering thermal analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Thümmler, Wissenschaft und Praxis, 5 (1989) 261.Google Scholar
  2. 2.
    S. Winkler, P. Davies and J. Janoschek, J. Thermal Anal., 40 (1993) 999.Google Scholar
  3. 3.
    H. Palmour, Sci. Sintering, 7 (1989) 367.Google Scholar
  4. 4.
    P. Komarenko and R. W. Messler, Int. J. Powder Metall., 30 (1994) 67.Google Scholar
  5. 5.
    M. L. Lyamshev, J. Stanullo and G. Busse, Materialprüfung, 37 (1995) 1.Google Scholar
  6. 6.
    W. J. Parker et al., J. Appl. Phys., 32 (1961) 1679.CrossRefGoogle Scholar
  7. 7.
    R. Enck and R. D. Harris, Mat. Res. Soc. Symp. Proc., 167 (1990) 235.Google Scholar
  8. 8.
    M. Güther and H.-J. Sölter, Apparat und Verfahren zur Tempareturleitfähigkeitsmessung, Patent DE 4131040, 1995.Google Scholar
  9. 9.
    D. P. H. Hasselmann, R. Syed and T.-Y. Tien, J. Mat. Science, 20 (1985) 2549.CrossRefGoogle Scholar
  10. 10.
    D. P. H. Hasselmann, L. J. Johnson, L. D. Bentsen, R. Syed. H. L. Lee and M. V. Swain, Am. Ceram Soc. Bull., 66 (1987) 799.Google Scholar
  11. 11.
    M. J. Wheeler, Brit. J. Appl. Phys., 16 (1965) 365.CrossRefGoogle Scholar
  12. 12.
    A. G. Shashkov, S. Yu Yanovskii and T. N. Abramenko, High. Temp.-High Press., 16 (1984) 93.Google Scholar
  13. 13.
    H.-J. Sölter, Das Laserpulsverfahren zur simultanen Bestimmung der Temperatur-und Wärmeleitfähigkeit von Zweischichtsystemen: Vergleich von Auswertungsformalismen und Untersuchungen an plasmagespritzten Schichten, Dissertation, Universität Stuttgart 1990. IKE-5-231, ISSN 0173-6892.Google Scholar
  14. 14.
    R. A. Nyquist and R. O. Kagel, Infrared Spectra of Inorganic Compounds, Academic Press, San Diego 1971.Google Scholar
  15. 15.
    W. W. Chen and B. Dunn, J. Am. Ceram. Soc., 76 (1993) 2086.CrossRefGoogle Scholar
  16. 16.
    S. Meyer, Apparatur zur Messung von kohärenter Laserlichtstreuung, Diplomarbeit, Fachhochschule Gießen-Friedberg and Fraunhofer-Institut für Silicatforschung, Würzburg 1996.Google Scholar
  17. 17.
    M. Pfeffer, Programmierbarer Gasmischer, Diplomarbeit, Fachhoshschule Gießen-Friedberg and Fraunhofer-Institut für Silicatforschung, Würzburg 1996.Google Scholar
  18. 18.
    G. Neubert, Aufbau eines pneumatischen Positioniersystems mit Mikrocontroller-Steuerung, Diplomarbeit, sFachhochschule Würzburg-Schweinfurt and Fraunhofer-Institut für Silicatforschung, Würzburg 1994.Google Scholar
  19. 19.
    M. E. R. Shanahan, J. Chem. Soc., Faraday Trans. 1,80 (1984) 37.Google Scholar
  20. 20.
    M. P. Borom and C. A. Johnson, Surf. Coat. Technol., 54–55 (1992) 45.CrossRefGoogle Scholar
  21. 21.
    H. S. Carlslaw and J. C. Jaeger, The conduction of heat in solids, Oxford Univ. Press, Oxford 1976, p. 118.Google Scholar
  22. 22.
    R. C. Heckman, J. Appl. Phys., 44 (1973) 1455.CrossRefGoogle Scholar
  23. 23.
    O. Hahn, F. Raether, M. C. Arduini-Schuster and J. Fricke, Int. J. Heat and Mass transfer, (1995).Google Scholar
  24. 24.
    N. Grimm, G. E. Scott and J. D. Sibold, Ceramic Bull., 50 (1971) 962.Google Scholar
  25. 25.
    A. C. Tam and H. Sontag, Applied Phys. Letters, 49 (1986) 1761.CrossRefGoogle Scholar
  26. 26.
    I. Barin, Thermochemical Data of Pure Substances, VCH Verlagsgesellschaft, Weinheim 1989.Google Scholar
  27. 27.
    W. F. Hemminger and H. K. Cammenga, Methoden der termischen Analyse, Springer, Berlin 1989.Google Scholar
  28. 28.
    U. Grigull and H. Sandner, Wärmeleitung, Springer-Verlag, Berlin 1990.Google Scholar
  29. 29.
    F. Raether and G. Müller, New in situ measuring methods for the optimization of sintering processes, Proceedings IV ECerS-Tagung, Riccione, Italy (1995) 103–112.Google Scholar
  30. 30.
    G. A. Slack, Nonmetallic crystals with high thermal conductivity, J. Phys. Chem. Solids, 34 (1973) 321–335.CrossRefGoogle Scholar
  31. 31.
    A. J. Walter, R. M. Dell and P. C. Burgess, Rev. Int. Hautes Temp., Refract. 7 (1970) 271.Google Scholar
  32. 32.
    W. H. Gitzen, Alumina as a Ceramic material, American Ceramic Society Inc., Columbus/Ohio 1970, p. 66.Google Scholar
  33. 33.
    O. Hahn, F. Raether and J. Fricke, Heat transfer at particle contacts in the presence of gases and/or liquid secondary phases, submitted to Int. J. of Thermophysics (1996).Google Scholar
  34. 34.
    Y. Ogniewicz and M. M. Yovanovich, Effective conductivity of regularly packed spheres: basic cell model with constrictions. Prog. Astronaut. Aeronaut., 60 (1978) 209.Google Scholar
  35. 35.
    G. Ondracek, J. of Materials Technology, 5 (1974) 416.Google Scholar
  36. 36.
    D. Uskokovic, The kinetics of Contact Formation during sintering by diffusion mechanisms, Science of Sintering, 9(3) (1977) 265.Google Scholar
  37. 37.
    G. A. Slack, R. A. Tanzilli, R. O. Pohl and J. W. Vandersande: The intrinsic thermal conductivity of AIN, J. Phys. Chem. Solids, 48 (1987) 641.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • F. Raether
    • 1
  • R. Hofmann
    • 1
  • G. Müller
    • 1
  • H. J. Sölter
    • 2
  1. 1.Fraunhofer-Institut für Silicatforschung (ISC)Würzburg
  2. 2.CompothermSykeGermany

Personalised recommendations