Skip to main content
Log in

Thermoanalytical Studies on Copper—Iron Sulphides

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The direct production of copper sulphate from copper ore is an important route to recover copper. The condition, however, is dependant on temperature and sulphatising environment. The oxidation of chalcopyrite in static air bed condition has been studied by TG/DTA and DSC techniques. The addition of catalysts, improved the sulphation by in-situ producing better condítions. The mutual effects of sulphides were further confirmed by studying the oxidation reaction on pure copper-iron sulphides and results so obtained were corroborated with X-ray diffractrograms. With only chalcopyrite a mass gain of 8% (TG) corresponding to copper sulphate formation was observed, in the temperature range 628–738 K. The TG plots showed respective mass gain of 14, 17 and 12% in presence of Fe2O3, Na2SO4 and FeSO4 with chalcopyrite in the wider temperature range 628–923 K. As such the cupric sulphide had a negligible tendency of sulphation, which increased with the addition of ferrous sulphide mixture under the temperature range studied. At higher temperature copper ferrite formation was found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Aneesuddin, P. N. Char, M. Raza Hussain and E. R. Sexena, J. Thermal Anal., 26 (1983) 205.

    Google Scholar 

  2. E. M. Kurian and R. V. Tamhankar, Trans. Indian Institute Metals, 24 (1971) 17.

    Google Scholar 

  3. K. S. Rao, R. P. Das and H. S. Ray, In Proc. of International Conference on Base Metals Technology, Jamshedpur, India 1989, p. 131.

  4. D. J. Vaughan and J. R. Craig, Minerals chemistry of metal sulphides, Cambridge University Press, London 1978, p. 299.

    Google Scholar 

  5. P. C. da A. Naves and A. J. Lakschevitz, Metal ABM, 31 (1975) 367.

    Google Scholar 

  6. G. Bayer and H. G. Wiedeman, Thermochim. Acta, 64 (1983) 27.

    Google Scholar 

  7. T. R. Ingraham, In: Applications of Fundamental Thermodynamics to Metallurgical Process, G. Fetterer ed., 1967, p. 179.

  8. I. D. Shah and S. E. Khalafalla, U. S. Govt. Re. Develop. Rep., RI 7459 (1970) 1.

  9. M. E. Wadsworth, K. L. Leiter, W. H. Porter and J. R. Lewis, Trans. AIME, 218 (1960) 519.

    Google Scholar 

  10. E. A. Peretti, Disc. Faraday Soc., 4 (1948) 174.

    Google Scholar 

  11. G. R. Jr. Smithon and J. E. Jr. Hanway, Trans. AIME, 224 (1962) 827.

    Google Scholar 

  12. M. G. Hocking and C. B. Alcock, Trans. AIME, 236 (1966) 635.

    Google Scholar 

  13. M. Shamsuddin, N. V. Nogc and P. M. Prasad, Met. Mater. Processes, 1 (1990) 275.

    Google Scholar 

  14. N. R. Mandre and T. Sharma, In: Proc. National Seminar on Research and Process Development in Mineral Preparation, Jamshedpur, India 1992, p. 128.

  15. S. C. Panda, L. B. Sukla and P. K. Jena, Can. Metall. Quart., 29 (1990) l41.

    Google Scholar 

  16. S. Prasad, B. D. Pandey and S. K. Palit, Mat. Trans. JIM, 37 (1996) 1304.

    Google Scholar 

  17. F. Opera, Min. Metall. Quart., 3 (1963) 193.

    Google Scholar 

  18. R. I. Razouk, M. Y. Farah, R. S. Mikhail and G. A. Kolta, J. Appl. Chem., 12 (1962) 190.

    Google Scholar 

  19. S. E. Khalafalla and I. D. Shah, Metall. Trans., 1 (1970) 2151.

    Google Scholar 

  20. H. H. Kellogg, Trans. AIME, 230 (1964) 1622.

    Google Scholar 

  21. P. G. Coombs and Z. A. Munir, Metall. Trans., 20B (1989) 661.

    Google Scholar 

  22. S. Prasad and B. D. Pandey, NML Technical Journal, 39 (1997) 229.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prasad, S., Pandey, B.D. Thermoanalytical Studies on Copper—Iron Sulphides. Journal of Thermal Analysis and Calorimetry 58, 625–637 (1999). https://doi.org/10.1023/A:1010108729034

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010108729034

Navigation