Skip to main content
Log in

Crystallization and Melting of Model Polyethylenes with Different Chain Structures

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The crystallization and melting of three model polyethylenes of different chain structures have been studied. The polymers studied were a linear copolymer, hydrogenated poly(butadiene); a hydrogenated poly(butadiene)-atactic poly(propylene) diblock copolymer; and a three-arm star hydrogenated poly(butadiene). An important feature of this work was that the crystallizing portions of the copolymers all have the same molecular lengths.

It was found that the overall crystallization rate decreases steadily from a linear to a diblock to the star copolymer. The differences in crystallization rates are related primarily to the activation energy for segmental transport. The non-crystallizable structure affects the segmental mobility to different degrees. An estimation of this effect is presented from the analysis of the overall crystallization rates using classical nucleation theory. In spite of thedifferences in their molecular structure, there are no major differences in the supermolecular structure of samples crystallized rapidly or slowly cooled.

The melting process followed by DSC of the isothermally crystallized linear and star copolymers shows two endothermic peaks at intermediate undercoolings. The double melting is associated with a partitioning of crystallizable ethylene sequences during crystallization. The longest sequences are preferentially selected in the early stages of the crystallization. Single melting peaks are obtained for high and very low undercoolings for the linear and the star copolymers as well as for the diblock in the whole range of temperatures. The lack of the second, lower melting endotherm in the diblock could be associated with the influence in the crystallization process of the amorphous block in the microphase segregated melt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. A. Miller, Ed., Ethylene and Its Industrial Derivatives. Ernest Been Limited, London 1969.

    Google Scholar 

  2. L. Mandelkern, R. G. Alamo, G. D. Wignall and F. C. Stehling, Trends in Polymer Science, 4 (1996) 377.

    Google Scholar 

  3. R. G. Alamo and L. Mandelkern, Thermochim. Acta, 238 (1994) 155.

    Google Scholar 

  4. I. G. Voigt-Martin, R. Alamo and L. Mandelkern, J. Polym. Sci., Polym. Phys. Ed., 24 (1986) 1283.

    Google Scholar 

  5. S. Bensason, J. Minick, A. Moet and E. Baer, J. Polym. Sci., Polym. Phys., 34 (1996) 1301.

    Google Scholar 

  6. L. Mandelkern, M. Glotin and R. S. Benson, Macromolecules, 14 (1981) 22.

    Google Scholar 

  7. F. Chowdhury, J. A. Haigh, L. Mandelkern and R. G. Alamo, Polymer Bulletin, 41 (1998) 463.

    Google Scholar 

  8. R. G. Alamo and L. Mandelkern, Macromolecules, 22 (1989) 1273.

    Google Scholar 

  9. R. G. Alamo, B. D. Viers and L. Mandelkern, Macromolecules, 26 (1993) 5740.

    Google Scholar 

  10. H. Rachapudy, G. G. Smith, V. R. Raju and W. W. Graessley, J. Polym. Sci., Polym. Phys. Ed., 17 (1979) 1211.

    Google Scholar 

  11. Z. Xu, J. W. Mays ansd X. Chen, N. Hadjichristidis, N. F. Schelling, H. E. Blair, D. S. Pearson and L. Fetters, Macromolecules, 18 (1985) 2560.

    Google Scholar 

  12. K. Sakurai, W. J. MacKnight, D. J. Lohse, D. N. Schulz and J. A. Sissano, Macromolecules, 27 (1994) 4941.

    Google Scholar 

  13. F. A. Quinn, Jr. and L. Mandelkern, J. Amer. Chem. Soc., 80 (1958) 3178.

    Google Scholar 

  14. M. J. Galante, L. Mandelkern, R. G. Alamo, A. Lehtinen and R. Paukkeri, J. Thermal Anal., 47 (1996) 913.

    Google Scholar 

  15. J. G. Fatou and L. Mandelkern, J. Phys. Chem., 69 (1965) 417.

    Google Scholar 

  16. R. Chiang and P. J. Flory, J. Amer. Chem. Soc., 83 (1961) 2857.

    Google Scholar 

  17. J. Maxfield and L. Mandelkern, Macromolecules, 10 (1977) 1141.

    Google Scholar 

  18. R. G. Alamo and L. Mandelkern, Macromolecules, 24 (1991) 6480.

    Google Scholar 

  19. D. Turnbull and J. C. Fischer, J. Chem. Phys., 17 (1949) 71.

    Google Scholar 

  20. L. Mandelkern, J. G. Fatou and C. Howard, J. Phys. Chem., 68 (1964) 3386.

    Google Scholar 

  21. L. Mandelkern, J. G. Fatou and C. Howard, J. Phys. Chem., 69 (1965) 956.

    Google Scholar 

  22. L. Mandelkern, N. L. Jain and H. Kim, J. Polym. Sci. A-2, 6 (1968) 165.

    Google Scholar 

  23. N. Okui, in Crystallization of Polymers, NATO ASI Series C: Mathematical and Physical Sciences, M. Dosière, Ed., Kluwer Acad. Pub., 1995, p. 593.

  24. P. J. Flory and A. Vrij, J. Amer. Chem. Soc., 85 (1963) 3548.

    Google Scholar 

  25. R. Alamo, R. Domszy and L. Mandelkern, J. Phys. Chem., 88 (1984) 6587.

    Google Scholar 

  26. S.-D. Clas, R. D. Heyding, D. C. McFaddin, K. E. Russell, M. V. Scammell-Bullock, E. C. Kelusky and D. St-Cyr, J. Polym. Sci., Polym. Phys. Ed., 26 (1988) 1271.

    Google Scholar 

  27. M. Glotin and L. Mandelkern, Colloid. Polym. Sci., 260 (1982) 182.

    Google Scholar 

  28. L. Mandelkern, Chemtracts-Macromolecular Chemistry, 3 (1992) 347.

    Google Scholar 

  29. J. R. Isasi, L. Mandelkern, M. J. Galante and R. G. Alamo, J. Polym. Sci., Ed. Part B: Polym. Phys., 37 (1999) 323.

    Google Scholar 

  30. M. Glotin and L. Mandelkern, Macromolecules, 14 (1981) 1394.

    Google Scholar 

  31. R.G. Alamo, L. Lu and L. Mandelkern, Polym. Preprints, 35 (1994) 410.

    Google Scholar 

  32. B. Crist and D. N. Williams, J. Macromol Sci. Phys., 1999, in press.

  33. The single phase melt diblock studied was sample 30/78 listed in Table 1 of reference [34]. It is a hydrogenated poly (butadiene) hydrogenated 1, 4-isoprene diblock copolymer.

  34. P. Rangarajan, R. A. Register and L. J. Fetters, Macromolecules, 26 (1993) 4640.

    Google Scholar 

  35. R. G. Alamo, E. K. M. Chan, L. Mandelkern and I. G. Voigt-Martin, Macromolecules, 25 (1992) 6381.

    Google Scholar 

  36. J. D. Hoffman and J. J. Weeks, J. Res. Natl. Bur. Stand. Part A, 66 (1962) 13.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haigh, J.A., Nguyen, C., Alamo, R.G. et al. Crystallization and Melting of Model Polyethylenes with Different Chain Structures. Journal of Thermal Analysis and Calorimetry 59, 435–450 (2000). https://doi.org/10.1023/A:1010105126071

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010105126071

Navigation