Journal of Nanoparticle Research

, Volume 1, Issue 4, pp 495–499 | Cite as

A New Probe for Mechanical Testing of Nanostructures in Soft Materials

  • L.A. Hough
  • H.D. Ou-Yang

Abstract

We report a new application of the optical tweezers, where a harmonically driven oscillating tweezer is combined with the forward light scattering and lock-in amplification techniques, for probing the mechanics of nanostructures in soft materials in a broad frequency range. Model independent dynamic moduli G′ and G″ of the material at a localized, sub-micron area can be measured directly from the displacement and the phase shift of the particle in the oscillating trap. The probe particles can be as small as 200 nm and the displacement of the particle was in the range of a few nanometers. To illustrate the new methodology, we show the microscopic viscoelastic properties of a transient polymer network in the vicinity of a silica bead.

optical tweezers nanoparticles particle-medium interaction dynamic mechanical testing dynamic moduli viscoelasticity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Annable T. et al., 1993. J. Rheol. 37, 695.Google Scholar
  2. Ashkin A., 1970. Phys. Rev. Lett., 24, 156.Google Scholar
  3. Ashkin A., J. Dziedzic, J. Bjorkholm & S. Chu, 1986. Opt. Lett., 11, 288.Google Scholar
  4. Block S.M., 1992. Making Light Work with Optical Tweezer, Nature, 360, 493.Google Scholar
  5. Crocker J.C. & D.G. Grier, 1994. Phys. Rev. Lett., 73, 352.Google Scholar
  6. Ghislain L.P., N.A. Switz & W.W. Webb, 1994. Rev. Sci. Inst., 65, 2762.Google Scholar
  7. Henon S., G. Lenormand, A. Richert & F. Gallet, F. 1999. Biophys. J. 76, 1145–1151.Google Scholar
  8. Jenkins R.D., C.A. Silebi & M.S. El-Aasser, 1991. Polymers as Rheology Modifiers. In: Schultz D.N. and Glass J.E. eds. Adv. Chem., 462, 222, and Associative Polymers With Novel Hydrophobe Structures, Proc. of the ACS Div. of Polymeric Mater.: Sci. and Eng., 1991, 65, 72.Google Scholar
  9. Kuo S.C. & M.P. Sheetz, 1992. Trends Cell Biol., 2, 116.Google Scholar
  10. Meyer E., M.F. Islam, W. Lau & H.D. Ou-Yang, Kinetics of complexation of β-cyclodextrin with molecules confined in a single oil droplet, submitted to Langmuir.Google Scholar
  11. Ou-Yang H.D. 1999. In: Dubin P. and Farinato R. eds. Polymer-Colloid Interactions: From Fundamentals to Practice. John Wiley and Sons, New York, Chapter 15, pp. 385–405.Google Scholar
  12. Pham Q.T., W.B. Russel & W. Lau, 1997. J. Rheol., 42, 159.Google Scholar
  13. Semenov A.N. J.F. Joanny & A.R. Khoklov, 1995. Macromolecules, 28, 1066.Google Scholar
  14. Séréro Y., R. Aznar, G. Porte, J.-F. Berret, D. Calvet, A. Collet & M. Viguier, 1998. Phys. Rev. Lett., 81, 5584.Google Scholar
  15. Simmons R.M., J.T. Finer, S. Chu & J.A. Spudich, 1996. Biophysical Journal, 70, 1813.Google Scholar
  16. Svoboda K., C.F. Schmidt, B.J. Schnapp & S.M. Block, 1993. Nature, 365, 721.Google Scholar
  17. Tanaka F. & S.F. Edwards, 1992. J. Non-Newtonian Fluid Mec. 43Parts 1,2,3. 247.Google Scholar
  18. Valentine M.T., L.E. Dewalt & H.D. Ou-Yang, 1996. J. Physics: Condens. Matter (UK), 8, 9477–9482.Google Scholar
  19. Visscher K., S.P. Gross & S.M. Block, 1996. IEEE J. Selected Topics in Quan. Elect., 2, 1066–1076.Google Scholar
  20. Wright W.H., G.J. Sonek & M.W. Berns, 1993. Appl. Phys. Lett., 63, 715.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • L.A. Hough
    • 1
  • H.D. Ou-Yang
    • 1
  1. 1.Physics DepartmentLehigh UniversityBethlehemUSA

Personalised recommendations