Dynamic Light Scattering Measurement of Nanometer Particles in Liquids

Abstract

Dynamic light scattering (DLS) techniques for studying sizes and shapes of nanoparticles in liquids are reviewed. In photon correlation spectroscopy (PCS), the time fluctuations in the intensity of light scattered by the particle dispersion are monitored. For dilute dispersions of spherical nanoparticles, the decay rate of the time autocorrelation function of these intensity fluctuations is used to directly measure the particle translational diffusion coefficient, which is in turn related to the particle hydrodynamic radius. For a spherical particle, the hydrodynamic radius is essentially the same as the geometric particle radius (including any possible solvation layers). PCS is one of the most commonly used methods for measuring radii of submicron size particles in liquid dispersions. Depolarized Fabry-Perot interferometry (FPI) is a less common dynamic light scattering technique that is applicable to optically anisotropic nanoparticles. In FPI the frequency broadening of laser light scattered by the particles is analyzed. This broadening is proportional to the particle rotational diffusion coefficient, which is in turn related to the particle dimensions. The translational diffusion coefficient measured by PCS and the rotational diffusion coefficient measured by depolarized FPI may be combined to obtain the dimensions of non-spherical particles. DLS studies of liquid dispersions of nanometer-sized oligonucleotides in a water-based buffer are used as examples.

This is a preview of subscription content, access via your institution.

References

  1. Aragon S.R. & R. Pecora, 1975. Biopolymers 14, 119.

    Google Scholar 

  2. Banachowicz E., J. Gapinski & A. Patkowski, 2000. Biophys. J. 78, 70.

    Google Scholar 

  3. Berne B.J. & R. Pecora, 2000. Dynamic Light Scattering. Dover Publications, New York.

    Google Scholar 

  4. Broersma S., 1960. J. Chem. Phys. 32, 1626, 1632; ibid. 1980. 74, 6889.

    Google Scholar 

  5. Brown W., ed., 1993. Dynamic Light Scattering: The Method and Some Applications. Clarendon Press, Oxford.

    Google Scholar 

  6. Bu Z., P.S. Russo, D.L. Tipton & I.I. Negulescu, 1994. Macromolecules 27, 6871.

    Google Scholar 

  7. Byron O., 1997. Biophys. J. 72, 408.

    Google Scholar 

  8. Camins B. & P.S. Russo, 1994. Langmuir 10, 4053.

    Google Scholar 

  9. Chu B., 1991. Laser Light Scattering, 2nd edn. Academic Press, New York.

    Google Scholar 

  10. Chu B. & T. Liu, 2000. J. Nanopart. Res. 2, 29.

    Google Scholar 

  11. Dierker S. et al., 1995. Phys. Rev. Lett. 75, 449.

    Google Scholar 

  12. Durian D.J., D.A. Weitz & D.J. Pine, 1991. Science 252, 686.

    Google Scholar 

  13. Eden D. & J.G. Elias, 1983. In: B.E. Dahneke, ed. Measurement of Suspended Particles by Quasi-Elastic Light Scattering. Wiley-Interscience, New York.

    Google Scholar 

  14. Eimer W. & R. Pecora, 1991. J. Chem. Phys. 94, 2324.

    Google Scholar 

  15. Eimer W. & Th. Dorfmüller, 1992. J. Phys. Chem. 96, 6790.

    Google Scholar 

  16. Eimer W., M. Niermann, M.A. Eppe & B.M. Jockusch, 1993. J. Mol. Biol. 229, 146.

    Google Scholar 

  17. Flamberg A. & R. Pecora, 1984. J. Phys. Chem. 88, 3026.

    Google Scholar 

  18. Garcia de la Torre J., M.C. Lopez Martinez & M.M. Tirado, 1984. Biopolymers 23, 611.

    Google Scholar 

  19. Garcia de la Torre J. & V. Bloomfield, 1981. Q. Rev. Biophys. 14, 81.

    Google Scholar 

  20. Garcia de la Torre J., S. Navarro & M.C. Lopez-Martinez, 1994. Biophys. J. 66, 1573.

    Google Scholar 

  21. Garcia de la Torre J. & J. Rodes, 1983. J. Chem. Phys. 79, 2454.

    Google Scholar 

  22. Graf C., W. Schaertl, M. Maskos & M. Schmidt, 2000. J. Chem. Phys. 112, 3031.

    Google Scholar 

  23. Haber-Pohlmeier S. & W. Eimer, 1993. J. Phys. Chem. 97, 3095.

    Google Scholar 

  24. Hellweg T., W. Eimer, E. Krahn, K. Schneider & A. Müller, 1997. Biochem. Biophys. Acta. 337, 311.

    Google Scholar 

  25. Kaszuba M., 1999. J. Nanopart. Res. 1, 405.

    Google Scholar 

  26. Lakowicz J.R., 1983. Principles of Fluorescence Spectroscopy. Plenum, New York.

    Google Scholar 

  27. Liu H., L. Skibinska, J. Gapinski, A. Patkowski, E.W. Fischer & R. Pecora, 1998. J. Chem. Phys. 109, 7556.

    Google Scholar 

  28. Michielsen S. & R. Pecora, 1981. Biochemistry 20, 6994.

    Google Scholar 

  29. Overbeck E. & Chr. Sinn, 1999. J. Mod. Optics 46, 303.

    Google Scholar 

  30. Patkowski A., W. Eimer & Th. Dorfmüller, 1990. Biopolymers 30, 93.

    Google Scholar 

  31. Patkowski A., W. Eimer, J. Seils, G. Schneider, B.M. Jockusch & Th. Dorfmüller, 1991. Biopolymers, 30, 1281.

    Google Scholar 

  32. Pecora R., ed., 1985. Dynamic Light Scattering: Applications of Photon Correlation Spectroscopy. Plenum, New York.

    Google Scholar 

  33. Perrin F., 1934. J. Phys. Rad. 5, 497; ibid. 1936. 7, 1.

    Google Scholar 

  34. Piazza R. & V. Gegiorgio, 1992. Physica A 182, 576.

    Google Scholar 

  35. Piazza R., J. Stavans, T. Bellini & V. Degiorgio, 1989. Opt. Commun. 73, 263.

    Google Scholar 

  36. Provencher S.W., 1982. Comput. Phys. Comm. 27, 213, 239.

    Google Scholar 

  37. Pusey P.N., R.J.A. Tough, 1985. In: R. Pecora, ed. Dynamic Light Scattering: Applications of Photon Correlation Spectroscopy. Plenum, New York.

    Google Scholar 

  38. Righini R., 1993. Science 262, 1386.

    Google Scholar 

  39. Schmitz K.S., 1990. An Introduction to Dynamic Light Scattering by Macromolecules. Academic Press, San Diego.

    Google Scholar 

  40. Schrof W., J. Klingler, W. Heckmann & D. Horn, 1998. Colloid. Polym. Sci. 276, 577.

    Google Scholar 

  41. Skibinska L., H. Liu, J. Gapinski, A. Patkowski, E.W. Fischer & R. Pecora, 1999. J. Chem. Phys. 110, 1794.

    Google Scholar 

  42. Startchev K., J. Zhang & C. Buffle, 1998. J. Coll. Interface Sci. 12.203, 189.

    Google Scholar 

  43. Teller D.C., E. Swanson & C. de Haen, 1979. Adv. Enzymol. 61, 103.

    Google Scholar 

  44. Thurn-Albrecht T. et al., 1999. Phys. Rev. E 59, 642.

    Google Scholar 

  45. Tirado M.M. & J. Garcia de la Torre, 1979. J. Chem. Phys. 71, 2581; ibid. 1980. 73, 1986.

    Google Scholar 

  46. Tirado M.M., M.C. Lopez Martinez & J. Garcia de la Torre, 1984. J. Chem. Phys. 81, 2047.

    Google Scholar 

  47. Venable R.M. & R.W. Pastor, 1988. Biopolymers 27, 1001.

    Google Scholar 

  48. Vo-Dinh T., G.D. Griffin, J.P. Alarie, B. Cullum, B. Sumpter & D. Noid, 2000. J. Nanopart. Res. 2, 17.

    Google Scholar 

  49. Ware B.R., D. Cyr, S. Gorti & F. Lanni, 1983. In: B.E. Dahneke, ed. Measurement of Suspended Particles by Quasi-Elastic Light Scattering. Wiley-Interscience, New York.

    Google Scholar 

  50. Wiese H. & D. Horn, 1991. J. Chem. Phys. 94, 6329.

    Google Scholar 

  51. Zero K.M. & R. Pecora, 1982. Macromolecules 15, 87.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pecora, R. Dynamic Light Scattering Measurement of Nanometer Particles in Liquids. Journal of Nanoparticle Research 2, 123–131 (2000). https://doi.org/10.1023/A:1010067107182

Download citation

  • nanoparticle
  • characterization
  • light scattering
  • PCS
  • interferometry
  • diffusion
  • polydispersivity