Advertisement

Journal of Nanoparticle Research

, Volume 2, Issue 2, pp 123–131 | Cite as

Dynamic Light Scattering Measurement of Nanometer Particles in Liquids

  • R. Pecora
Editorial Commentary

Abstract

Dynamic light scattering (DLS) techniques for studying sizes and shapes of nanoparticles in liquids are reviewed. In photon correlation spectroscopy (PCS), the time fluctuations in the intensity of light scattered by the particle dispersion are monitored. For dilute dispersions of spherical nanoparticles, the decay rate of the time autocorrelation function of these intensity fluctuations is used to directly measure the particle translational diffusion coefficient, which is in turn related to the particle hydrodynamic radius. For a spherical particle, the hydrodynamic radius is essentially the same as the geometric particle radius (including any possible solvation layers). PCS is one of the most commonly used methods for measuring radii of submicron size particles in liquid dispersions. Depolarized Fabry-Perot interferometry (FPI) is a less common dynamic light scattering technique that is applicable to optically anisotropic nanoparticles. In FPI the frequency broadening of laser light scattered by the particles is analyzed. This broadening is proportional to the particle rotational diffusion coefficient, which is in turn related to the particle dimensions. The translational diffusion coefficient measured by PCS and the rotational diffusion coefficient measured by depolarized FPI may be combined to obtain the dimensions of non-spherical particles. DLS studies of liquid dispersions of nanometer-sized oligonucleotides in a water-based buffer are used as examples.

nanoparticle characterization light scattering PCS interferometry diffusion polydispersivity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aragon S.R. & R. Pecora, 1975. Biopolymers 14, 119.Google Scholar
  2. Banachowicz E., J. Gapinski & A. Patkowski, 2000. Biophys. J. 78, 70.Google Scholar
  3. Berne B.J. & R. Pecora, 2000. Dynamic Light Scattering. Dover Publications, New York.Google Scholar
  4. Broersma S., 1960. J. Chem. Phys. 32, 1626, 1632; ibid. 1980. 74, 6889.Google Scholar
  5. Brown W., ed., 1993. Dynamic Light Scattering: The Method and Some Applications. Clarendon Press, Oxford.Google Scholar
  6. Bu Z., P.S. Russo, D.L. Tipton & I.I. Negulescu, 1994. Macromolecules 27, 6871.Google Scholar
  7. Byron O., 1997. Biophys. J. 72, 408.Google Scholar
  8. Camins B. & P.S. Russo, 1994. Langmuir 10, 4053.Google Scholar
  9. Chu B., 1991. Laser Light Scattering, 2nd edn. Academic Press, New York.Google Scholar
  10. Chu B. & T. Liu, 2000. J. Nanopart. Res. 2, 29.Google Scholar
  11. Dierker S. et al., 1995. Phys. Rev. Lett. 75, 449.Google Scholar
  12. Durian D.J., D.A. Weitz & D.J. Pine, 1991. Science 252, 686.Google Scholar
  13. Eden D. & J.G. Elias, 1983. In: B.E. Dahneke, ed. Measurement of Suspended Particles by Quasi-Elastic Light Scattering. Wiley-Interscience, New York.Google Scholar
  14. Eimer W. & R. Pecora, 1991. J. Chem. Phys. 94, 2324.Google Scholar
  15. Eimer W. & Th. Dorfmüller, 1992. J. Phys. Chem. 96, 6790.Google Scholar
  16. Eimer W., M. Niermann, M.A. Eppe & B.M. Jockusch, 1993. J. Mol. Biol. 229, 146.Google Scholar
  17. Flamberg A. & R. Pecora, 1984. J. Phys. Chem. 88, 3026.Google Scholar
  18. Garcia de la Torre J., M.C. Lopez Martinez & M.M. Tirado, 1984. Biopolymers 23, 611.Google Scholar
  19. Garcia de la Torre J. & V. Bloomfield, 1981. Q. Rev. Biophys. 14, 81.Google Scholar
  20. Garcia de la Torre J., S. Navarro & M.C. Lopez-Martinez, 1994. Biophys. J. 66, 1573.Google Scholar
  21. Garcia de la Torre J. & J. Rodes, 1983. J. Chem. Phys. 79, 2454.Google Scholar
  22. Graf C., W. Schaertl, M. Maskos & M. Schmidt, 2000. J. Chem. Phys. 112, 3031.Google Scholar
  23. Haber-Pohlmeier S. & W. Eimer, 1993. J. Phys. Chem. 97, 3095.Google Scholar
  24. Hellweg T., W. Eimer, E. Krahn, K. Schneider & A. Müller, 1997. Biochem. Biophys. Acta. 337, 311.Google Scholar
  25. Kaszuba M., 1999. J. Nanopart. Res. 1, 405.Google Scholar
  26. Lakowicz J.R., 1983. Principles of Fluorescence Spectroscopy. Plenum, New York.Google Scholar
  27. Liu H., L. Skibinska, J. Gapinski, A. Patkowski, E.W. Fischer & R. Pecora, 1998. J. Chem. Phys. 109, 7556.Google Scholar
  28. Michielsen S. & R. Pecora, 1981. Biochemistry 20, 6994.Google Scholar
  29. Overbeck E. & Chr. Sinn, 1999. J. Mod. Optics 46, 303.Google Scholar
  30. Patkowski A., W. Eimer & Th. Dorfmüller, 1990. Biopolymers 30, 93.Google Scholar
  31. Patkowski A., W. Eimer, J. Seils, G. Schneider, B.M. Jockusch & Th. Dorfmüller, 1991. Biopolymers, 30, 1281.Google Scholar
  32. Pecora R., ed., 1985. Dynamic Light Scattering: Applications of Photon Correlation Spectroscopy. Plenum, New York.Google Scholar
  33. Perrin F., 1934. J. Phys. Rad. 5, 497; ibid. 1936. 7, 1.Google Scholar
  34. Piazza R. & V. Gegiorgio, 1992. Physica A 182, 576.Google Scholar
  35. Piazza R., J. Stavans, T. Bellini & V. Degiorgio, 1989. Opt. Commun. 73, 263.Google Scholar
  36. Provencher S.W., 1982. Comput. Phys. Comm. 27, 213, 239.Google Scholar
  37. Pusey P.N., R.J.A. Tough, 1985. In: R. Pecora, ed. Dynamic Light Scattering: Applications of Photon Correlation Spectroscopy. Plenum, New York.Google Scholar
  38. Righini R., 1993. Science 262, 1386.Google Scholar
  39. Schmitz K.S., 1990. An Introduction to Dynamic Light Scattering by Macromolecules. Academic Press, San Diego.Google Scholar
  40. Schrof W., J. Klingler, W. Heckmann & D. Horn, 1998. Colloid. Polym. Sci. 276, 577.Google Scholar
  41. Skibinska L., H. Liu, J. Gapinski, A. Patkowski, E.W. Fischer & R. Pecora, 1999. J. Chem. Phys. 110, 1794.Google Scholar
  42. Startchev K., J. Zhang & C. Buffle, 1998. J. Coll. Interface Sci. 12.203, 189.Google Scholar
  43. Teller D.C., E. Swanson & C. de Haen, 1979. Adv. Enzymol. 61, 103.Google Scholar
  44. Thurn-Albrecht T. et al., 1999. Phys. Rev. E 59, 642.Google Scholar
  45. Tirado M.M. & J. Garcia de la Torre, 1979. J. Chem. Phys. 71, 2581; ibid. 1980. 73, 1986.Google Scholar
  46. Tirado M.M., M.C. Lopez Martinez & J. Garcia de la Torre, 1984. J. Chem. Phys. 81, 2047.Google Scholar
  47. Venable R.M. & R.W. Pastor, 1988. Biopolymers 27, 1001.Google Scholar
  48. Vo-Dinh T., G.D. Griffin, J.P. Alarie, B. Cullum, B. Sumpter & D. Noid, 2000. J. Nanopart. Res. 2, 17.Google Scholar
  49. Ware B.R., D. Cyr, S. Gorti & F. Lanni, 1983. In: B.E. Dahneke, ed. Measurement of Suspended Particles by Quasi-Elastic Light Scattering. Wiley-Interscience, New York.Google Scholar
  50. Wiese H. & D. Horn, 1991. J. Chem. Phys. 94, 6329.Google Scholar
  51. Zero K.M. & R. Pecora, 1982. Macromolecules 15, 87.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • R. Pecora
    • 1
  1. 1.Department of ChemistryStanford UniversityStanfordUSA

Personalised recommendations