Molecular Nature of the Vitamin D Receptor and its Role in Regulation of Gene Expression

  • Peter W. Jurutka
  • G. Kerr Whitfield
  • Jui-Cheng Hsieh
  • Paul D. Thompson
  • Carol A. Haussler
  • Mark R. Haussler
Article
1,25-dihydroxyvitamin D3 hormone nuclear receptor superfamily retinoid X receptor calcium homeostasis hereditary hypocalcemic vitamin D resistant rickets bone mineral density osteoporosis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Haussler MR, Whitfield GK, Haussler CA, Hsieh J-C, Thompson PD, Selznick SH, Encinas Dominguez C, Jurutka PW. The nuclear vitamin D receptor: Biological and molecular regulatory properties revealed. J Bone Miner Res 1998;13:325-349.Google Scholar
  2. 2.
    Brooks MH, Bell NH, Love L, Stern PH, Orfei E, Queener SF, Hamstra AJ, DeLuca HF. Vitamin-D-dependent rickets type II. Resistance of target organs to 1,25-dihydroxyvitamin D. N Engl J Med 1978;298:996-999.Google Scholar
  3. 3.
    Hewison M, Rut AR, Kristjansson K, Walker RE, Dillon MJ, Hughes MR, O'Riordan JLH. Tissue resistance to 1,25-dihydroxyvitamin D without a mutation of the vitamin D receptor gene. Clin Endocrinol (Oxf ) 1993;39:663-670.Google Scholar
  4. 4.
    Manolagas SC, Yu X-P, Girasole G, Bellido T. Vitamin D and the hematolymphopoietic tissue: A 1994 update. Sem Nephrol 1994;14:129-143.Google Scholar
  5. 5.
    Lemire JM. Immunomodulatory actions of 1,25-dihydroxyvitamin D3. J Steroid Biochem Molec Biol 1995;53:599-602.Google Scholar
  6. 6.
    Yoshizawa T, Handa Y, Uematsu Y, Takeda S, Sekine K, Yoshihara Y, Kawakami T, Arioka K, Sato H, Uchiyama Y, Masushige S, Fukamizu A, Matsumoto T, Kato S. Mice lacking the vitamin D receptor exhibit impaired bone formation, uterine hypoplasia and growth retardation after weaning. Nat Genet 1997;16:391-396.Google Scholar
  7. 7.
    Li YC, Pirro AE, Amling M, Delling G, Baron R, Bronson R, Demay MB. Targeted ablation of the vitamin D receptor: An animal model of vitamin D-dependent rickets type II with alopecia. Proc Natl Acad Sci USA 1997;94:9831-9835.Google Scholar
  8. 8.
    Li YC, Amling M, Pirro AE, Priemel M, Meuse J, Baron R, Delling G, Demay MB. Normalization of mineral ion homeostasis by dietary means prevents hyperparathyroidism, rickets, and osteomalacia, but not alopecia in vitamin D receptor-ablated mice. Endocrinology 1998;139:4391-4396.Google Scholar
  9. 9.
    al-Aqeel A, Ozand P, Sobki S, Sewairi W, Marx S. The combined use of intravenous and oral calcium for the treatment of vitamin D dependent rickets type II (VDDRII). Clin Endocrinol (Oxf ) 1993;39:229-237.Google Scholar
  10. 10.
    Takeda S, Yoshizawa T, Fukumoto S, Nagai Y, Murayama H, Matsumoto T, Kato S, Fujita T. Bone metabolism and in vitro osteoclast formation in VDR knock-out mice. J Bone Miner Res 1997;12, (Suppl. 1):S110 (abstract 32).Google Scholar
  11. 11.
    Jimi E, Nakamura I, Amano H, Taguchi Y, Tsurukai T, Tamura M, Takahashi N, Suda T. Osteoclast function is activated by osteoblastic cells through a mechanism involving cell-to-cell contact. Endocrinology 1996;137:2187-2190.Google Scholar
  12. 12.
    Yasuda H, Shima N, Nakagawa N, Yamaguchi K, Kinosaki M, Mochizuki S, Tomoyasu A, Yano K, Goto M, Murakami A, Tsuda E, Morinaga T, Higashio K, Udagawa N, Takahashi N, Suda T. Osteoclast differentiation factor is a ligand for osteoprotegerin/ osteoclastogenesis-inhibitory factor and is identical to TRANCE/ RANKL. Proc Natl Acad Sci USA 1998;95:3597-3602.Google Scholar
  13. 13.
    Ducy P, Karsenty G. Genetic control of cell differentiation in the skeleton. Curr Opin Cell Biol 1998;10:614-619.Google Scholar
  14. 14.
    Mangelsdorf DJ, Koeffler HP, Donaldson CA, Pike JW, Haussler MR. 1,25-dihydroxyvitamin D3-induced differentiation in a human promyelocytic leukemia cell line (HL-60): Receptor-mediated maturation to macrophage-like cells. J Cell Biol 1984;98: 391-398.Google Scholar
  15. 15.
    Wientroub S, Winter CC, Wahl SM, Wahl LM. Effect of vitamin D deficiency on macrophage and lymphocyte function in the rat. Calcif Tissue Int 1989;44:125-130.Google Scholar
  16. 16.
    Nemere I, Schwartz Z, Pedrozo H, Sylvia VL, Dean DD, Boyan BD. Identification of a membrane receptor for 1,25-dihydroxyvitamin D3which mediates rapid activation of protein kinase C. J Bone Miner Res 1998;13:1353-1359.Google Scholar
  17. 17.
    Norman AW. Receptors for 1alpha,25(OH)2D3: past, present, and future. J Bone Miner Res 1998;13:1360-1369.Google Scholar
  18. 18.
    Whit-field GK, Jurutka PW, Haussler CA, Haussler MR. Steroid hormone receptors: Evolution, ligands and molecular basis of biologic function. J Cell Biochem 2000;32/33(Suppl.):110-122.Google Scholar
  19. 19.
    Kuiper GG, Enmark E, Pelto-Huikko M, Nilsson S, Gustafsson J-Å. Cloning of a novel estrogen receptor expressed in rat prostate and ovary. Proc Natl Acad Sci USA 1996;93:5925-5930.Google Scholar
  20. 20.
    Morrison NA, Qi JC, Tokita A, Kelly PJ, Crofts L, Nguyen TV, Sambrook PN, Eisman JA. Prediction of bone density from vitamin D receptor alleles. Nature 1994;367:284-287.Google Scholar
  21. 21.
    Houston LA, Grant SF, Reid DM, Ralston SH. Vitamin D receptor polymorphism, bone mineral density, and osteoporotic vertebral fracture: Studies in a UK population. Bone 1996;18:249-252.Google Scholar
  22. 22.
    Ingles SA, Haile RW, Henderson BE, Kolonel LN, Nakaichi G, Shi C-Y, Yu MC, Ross RK, Coetzee GA. Strength of linkage disequilibrium between two vitamin D receptor markers in five ethnic groups: Implications for association studies. Cancer Epidemiol Biomarkers Prev 1997;6:93-98.Google Scholar
  23. 23.
    Ingles SA, Ross RK, Yu MC, Irvine RA, La Pera G, Haile RW, Coetzee GA. Association of prostate cancer risk with genetic polymorphisms in vitamin D receptor and androgen receptor. J Natl Cancer Inst 1997;89:166-170.Google Scholar
  24. 24.
    Gingras A-C, Raught B, Sonenberg N. eIF4 initiation factors: Effectors of mRNA recruitment to ribosomes and regulators of translation. Ann Rev Biochem 1999;68:913-963.Google Scholar
  25. 25.
    Deo RC, Bonanno JB, Sonenberg N, Burley SK. Recognition of polyadenylate RNA by the poly(A)-binding protein. Cell 1999;98:835-845.Google Scholar
  26. 26.
    Remus LS, Whitfield GK, Jurutka PW, Zitzer H, Oza AK, Dang HTL, Haussler CA, Galligan MA, Thatcher ML, Haussler MR. Functional evaluation of endogenous VDR alleles in human fibroblast cell lines: Relative contrIbution of F/f and L/S genotypes to 1,25(OH)2D3-elicited VDR transactivation ability. Bone 1998;23 (Suppl. 5):S198 (abstract 1205).Google Scholar
  27. 27.
    Jurutka PW, Remus LS, Whitfield GK, Thompson PD, Hsieh J-C, Zitzer H, Tavakkoli P, Galligan MA, Dang HT, Haussler CA, Haussler MR. The polymorphic N-terminus in human vitamin D receptor isoforms influences transcriptional activity by modulating interaction with transcription factor IIB. Mol Endocrinol 2000;14:401-420.Google Scholar
  28. 28.
    Arai H, Miyamoto K-I, Taketani Y, Yamamoto H, Iemori Y, Morita K, Tonai T, Nishisho T, Mori S, Takeda E. A vitamin D receptor gene polymorphism in the translation initiation codon: Effect on protein activity and relation to bone mineral density in Japanese women. J Bone Miner Res 1997;12:915-921.Google Scholar
  29. 29.
    Gross C, Eccleshall TR, Malloy PJ, Villa ML, Marcus R, Feldman D. The presence of a polymorphism at the translation initiation site of the vitamin D receptor gene is associated with low bone mineral density in postmenopausal Mexican-American women. J Bone Miner Res 1996;11:1850-1855.Google Scholar
  30. 30.
    Ferrari S, Rizzoli R, Manen D, Slosman D, Bonjour JP. Vitamin D receptor gene start codon polymorphisms (FokI) and bone mineral density: Interaction with age, dietary calcium, and 3'-end region polymorphisms. J Bone Miner Res 1998;13:925-930.Google Scholar
  31. 31.
    Yamamoto H, Miyamoto K, Li B, Taketani Y, Kitano M, Inoue Y, Morita K, Pike JW, Takeda E. The caudal-related homeodomain protein Cdx-2 regulates vitamin D receptor gene expression in the small intestine. J Bone Miner Res 1999;14:240-247.Google Scholar
  32. 32.
    Suh E, Chen L, Taylor J, Traber PG. A homeodomain protein related to caudal regulates intestine-specific gene transcription. Mol Cell Biol 1994;14:7340-7351.Google Scholar
  33. 33.
    Arai H, Miyamoto K, Yoshida M, Kubota M, Yamamoto H, Taketani Y, Yoshida S, Ikeda M, Takeda E. The polymorphism in the caudal-related homeodomain protein Cdx-2 binding element in the human vitamin D receptor gene. J Bone Miner Res 1999;14:S191 (abstract T084).Google Scholar
  34. 34.
    Miyamoto K-i, Kesterson RA, Yamamoto H, Taketani Y, Nishiwaki E, Tatsumi S, Inoue Y, Morita K, Takeda E, Pike JW. Structural organization of the human vitamin D receptor chromosomal gene and its promoter. Mol Endocrinol 1997;11:1165-1179.Google Scholar
  35. 35.
    Crofts L, Hancock MS, Morrison NA, Eisman JA. Multiple promoters direct the tissue-specific expression of novel N-terminal variant human vitamin D receptor gene transcripts. Proc Natl Acad Sci USA 1998;95:10529-10534.Google Scholar
  36. 36.
    Sunn KL, Cock T, Crofts LA, Eisman JA, Gardiner EM. Novel Nterminal variant of human viamin D receptor protein. J Bone Miner Res 1999;14, (Suppl. 1):S168(Abstract 1146).Google Scholar
  37. 37.
    Subbarayan V, Kastner P, Mark M, Dierich A, Gorry P, Chambon P. Limited specificity and large overlap of the functions of the mouse RAR gamma 1 and RAR gamma 2 isoforms. Mech Dev 1997;66:131-142.Google Scholar
  38. 38.
    Abel ED, Boers ME, Pazos-Moura C, Moura E, Kaulbach H, Zakaria M, Lowell B, Radovick S, Liberman MC, Wondisford F. Divergent roles for thyroid hormone receptor beta isoforms in the endocrine axis and auditory system. J Clin Invest 1999;104:291-300.Google Scholar
  39. 39.
    Saga Y, Kobayashi M, Ohta H, Murai N, Nakai N, Oshima M, Taketo MM. Impaired extrapyramidal function caused by the targeted disruption of retinoid X receptor RXRgamma1 isoform. Genes Cells 1999;4:219-228.Google Scholar
  40. 40.
    Haussler MR, Jurutka PW, Hsieh J-C, Thompson PD, Haussler CA, Selznick SH, Remus LS, Whitfield GK. Nuclear vitamin D receptor: Structure-function, phosphorylation and control of gene transcription. In: Feldman D, Glorieux FH, Pike JW, eds. Vitamin D. San Diego: Academic Press, 1997:149-177.Google Scholar
  41. 41.
    Hsieh J-C, Shimizu Y, Minoshima S, Shimizu N, Haussler CA, Jurutka PW, Haussler MR. Novel nuclear localization signal between the two DNA-binding zinc fingers in the human vitamin D receptor. J Cell Biochem 1998;70:94-109.Google Scholar
  42. 42.
    Jurutka PW, Hsieh J-C, Remus LS, Whitfield GK, Thompson PD, Haussler CA, Blanco JCG, Ozato K, Haussler MR. Mutations in the 1,25-dihydroxyvitamin D3 receptor identifying C-terminal amino acids required for transcriptional activation that are functionally dissociated from hormone binding, heterodimeric DNA binding and interaction with basal transcription factor IIB, in vitro. J Biol Chem 1997;272:14592-14599.Google Scholar
  43. 43.
    Kraichely DM, Collins JJ, 3rd, DeLisle RK, MacDonald PN. The autonomous transactivation domain in helix H3 of the vitamin D receptor is required for transactivation and coactivator interaction. J Biol Chem 1999;274:14352-14358.Google Scholar
  44. 44.
    Shao D, Lazar MA. Modulating nuclear receptor function: May the phos be with you. J Clin Invest 1999;103:1617-1618.Google Scholar
  45. 45.
    Jones BB, Jurutka PW, Haussler CA, Haussler MR, Whitfield GK. Vitamin D receptor phosphorylation in transfected ROS 17/2.8 cells is localized to the N-terminal region of the hormone-binding domain. Mol Endocrinol 1991;5:1137-1146.Google Scholar
  46. 46.
    Jurutka PW, Hsieh J-C, MacDonald PN, Terpening CM, Haussler CA, Haussler MR, Whitfield GK. Phosphorylation of serine 208 in the human vitamin D receptor: The predominant amino acid phosphorylated by casein kinase II, in vitro, and identification as a significant phosphorylation site in intact cells. J Biol Chem 1993;268:6791-6799.Google Scholar
  47. 47.
    Hilliard GM, Cook RG, Weigel NL, Pike JW. 1,25-dihydroxyvitamin D3 modulates phosphorylation of serine 205 in the human vitamin D receptor: Site-directed mutagenesis of this residue promotes alternative phosphorylation. Biochemistry 1994;33:4300-4311.Google Scholar
  48. 48.
    Jurutka PW, Hsieh J-C, Nakajima S, Haussler CA, Whitfield GK, Haussler MR. Human vitamin D receptor phosphorylation by casein kinase II at ser-208 potentiates transcriptional activation. Proc Natl Acad Sci USA 1996;93:3519-3524.Google Scholar
  49. 49.
    Hsieh J-C, Jurutka PW, Galligan MA, Terpening CM, Haussler CA, Samuels DS, Shimizu Y, Shimizu N, Haussler MR. Human vitamin D receptor is selectively phosphorylated by protein kinase C on serine 51, a residue crucial to its trans-activation function. Proc Natl Acad Sci USA 1991;88:9315-9319.Google Scholar
  50. 50.
    Hsieh J-C, Jurutka PW, Nakajima S, Galligan MA, Haussler CA, Shimizu Y, Shimizu N, Whitfield GK, Haussler MR. Phosphorylation of the human vitamin D receptor by protein kinase C: Biochemical and functional evaluation of the serine 51 recognition site. J Biol Chem 1993;268:15118-15126.Google Scholar
  51. 51.
    Rastinejad F, Perlmann T, Evans RM, Sigler PB. Structural determinants of nuclear receptor assembly on DNA direct repeats. Nature 1995;375:203-211.Google Scholar
  52. 52.
    Rangarajan PN, Umesono K, Evans RM. Modulation of glucocorticoid receptor function by protein kinase A. Mol Endocrinol 1992;6:1451-1457.Google Scholar
  53. 53.
    Haussler MR, Jurutka PW, Hsieh J-C, Thompson PD, Selznick SH, Haussler CA, Whitfield GK. Receptor mediated genomic actions of 1,25(OH)2D3: Modulation by phosphorylation. In: Norman AW, Bouillon R, Thomasset M, eds. Vitamin D: A Pluripotent Steroid Hormone: Structural Studies, Molecular Endocrinology and Clinical Applications. Berlin: Walter de Gruyter, 1994:209-216.Google Scholar
  54. 54.
    Jurutka PW, Hsieh J-C, Haussler MR. Phosphorylation of the human 1,25-dihydroxyvitamin D3 receptor by cAMP-dependent protein kinase, in vitro, and in transfected COS-7 cells. Biochem Biophys Res Commun 1993;191:1089-1096.Google Scholar
  55. 55.
    Darwish HM, Burmester JK, Moss VE, DeLuca HF. Phosphorylation is involved in transcriptional activation by the 1,25-dihydroxyvitamin D3 receptor. Biochim Biophys Acta 1993;1167:29-36.Google Scholar
  56. 56.
    . Taneja R, Rochette-Egly C, Plassat JL, Penna L, Gaub MP, Chambon P. Phosphorylation of activation functions AF-1 and AF-2 of RARalpha and RARgamma is indispensable for differentiation of F9 cells upon retinoic acid and cAMP treatment. EMBO J 1997;16:6452-6465.Google Scholar
  57. 57.
    Ozono K, Liao J, Kerner SA, Scott RA, Pike JW. The vitamin Dresponsive element in the human osteocalcin gene: Association with a nuclear proto-oncogene enhancer. J Biol Chem 1990;265:21881-21888.Google Scholar
  58. 58.
    . La Vista-Picard N, Hobbs PD, Pfahl M, Dawson MI, Pfahl M. The receptor-DNA complex determines the retinoid response: A mechanism for the diversification of the ligand signal. Mol Cell Biol 1996;16:4137-4146.Google Scholar
  59. 59.
    Staal A, van Wijnen AJ, Birkenhäger JC, Pols HAP, Prahl J, DeLuca H, Gaub M-P, Lian JB, Stein GS, van Leeuwen JPTM, Stein JL. Distinct conformations of vitamin D receptor/retinoid X receptor-α heterodimers are specified by dinucleotide differences in the vitamin D-responsive elements for the osteocalcin and osteopontin genes. Mol Endocrinol 1996;10:1444-1456.Google Scholar
  60. 60.
    Koszewski NJ, Ashok S, Russell J. Turning a negative into a positive: Vitamin D receptor interactions with the avian parathyroid hormone response element. Mol Endocrinol 1999;13:455-465.Google Scholar
  61. 61.
    Sneddon WB, Bogado CE, Kiernan MS, Demay MB. DNA sequences downstream from the vitamin D response element of the rat osteocalcin gene are required for ligand-dependent transactivation. Mol Endocrinol 1997;11:210-217.Google Scholar
  62. 62.
    Ohyama Y, Ozono K, Uchida M, Yoshimura M, Shinki T, Suda T, Yamamoto O. Functional assessment of two vitamin D-responsive elements in the rat 25-hydroxyvitamin D3 24-hydroxylase gene. J Biol Chem 1996;271:30381-30385.Google Scholar
  63. 63.
    Candeliere GA, Jurutka PW, Haussler MR, St-Arnaud R. A composite element binding the vitamin D receptor, retinoid X receptor α, and a member of the CTF/NF-1 family of transcription factors mediates the vitamin D responsiveness of the c-fos promoter. Mol Cell Biol 1996;16:584-592.Google Scholar
  64. 64.
    Zugmaier G, Jager R, Grage B, Gottardis MM, Havemann K, Knabbe C. Growth-inhibitory effects of vitamin D analogs and retinoids on human pancreatic cancer cells. Br J Cancer 1996;73:1341-1346.Google Scholar
  65. 65.
    Kane KF, Langman MJS, Williams GR. Antiproliferative responses of two human colon cancer cell lines to vitamin D3 are differentially modified by 9-cis-retinoic acid. Cancer Res 1996;56:623-632.Google Scholar
  66. 66.
    Peleg S, Sastry M, Collins ED, Bishop JE, Norman AW. Distinct conformational changes induced by 20-epi analogs of 1α,25-dihydroxyvitamin D3 are associated with enhanced activation of the vitamin D receptor. J Biol Chem 1995;270:10551-10558.Google Scholar
  67. 67.
    Abe J, Takita Y, Nakano T, Miyaura C, Suda T, Nishii Y. A synthetic analog of vitamin D3, 22-oxa-1α,25-dihydroxyvitamin D3, is a potent modulator of in vivo immunoregulating activity without inducing hypercalcemia in mice. Endocrinology 1989;124:2645-2647.Google Scholar
  68. 68.
    Cheskis B, Lemon BD, Uskokovic M, Lomedico PT, Freedman LP. Vitamin D3-retinoid X receptor dimerization, DNA binding, and transactivation are differentially affected by analogs of 1,25-dihydroxyvitamin D3. Mol Endocrinol 1995;9:1814-1824.Google Scholar
  69. 69.
    Yang W, Freedman LP. 20-Epi analogs of 1,25-dihydroxyvitamin D3 are highly potent inducers of DRIP coactivator complex binding to the vitamin D3 receptor. J Biol Chem 1999;274:16838-16845.Google Scholar
  70. 70.
    Liu YY, Collins ED, Norman AW, Peleg S. Differential interaction of 1alpha,25-dihydroxyvitamin D3 analogs and their 20-epi homologues with the vitamin D receptor. J Biol Chem 1997;272:3336-3345.Google Scholar
  71. 71.
    Nagpal S, Friant S, Nakshatri H, Chambon P. RARs and RXRs: Evidence for two autonomous transactivation domains (AF-1 and AF-2) and heterodimerization in vivo. EMBO J 1993;12:2349-2360.Google Scholar
  72. 72.
    McKenna NJ, Xu J, Nawaz Z, Tsai SY, Tsai M-J, O'Malley BW. Nuclear receptor coactivators: Multiple enzymes, multiple complexes, multiple functions. J Steroid Biochem Molec Biol 1999;69:3-12.Google Scholar
  73. 73.
    Thompson PD, Jurutka PW, Haussler CA, Whitfield GK, Haussler MR. Heterodimeric DNA binding by the vitamin D receptor and retinoid X receptors is enhanced by 1,25-dihydroxyvitamin D3 and inhibited by 9-cis retinoic acid: Evidence for allosteric receptor interactions. J Biol Chem 1998;273:8483-8491.Google Scholar
  74. 74.
    Whitfield GK, Hsieh J-C, Nakajima S, MacDonald PN, Thompson PD, Jurutka PW, Haussler CA, Haussler MR. A highly conserved region in the hormone binding domain of the human vitamin D receptor contains residues vital for heterodimerization with retinoid X receptor and for transcriptional activation. Mol Endocrinol 1995;9:1166-1179.Google Scholar
  75. 75.
    . Feng W, Ribeiro RC, Wagner RL, Nguyen H, Apriletti JW, Fletterick RJ, Baxter JD, Kushner PJ, West BL. Hormonedependent coactivator binding to a hydrophobic cleft on nuclear receptors. Science 1998;280:1747-1749.Google Scholar
  76. 76.
    Xu L, Glass CK, Rosenfeld MG. Coactivator and corepressor complexes in nuclear receptor function. Curr Opin Genet Dev 1999;9:140-147.Google Scholar
  77. 77.
    Gill RK, Atkins LM, Hollis BW, Bell NH. Mapping the domains of the interaction of the vitamin D receptor and steroid receptor coactivator-1. Mol Endocrinol 1998;12:57-65.Google Scholar
  78. 78.
    Hong H, Kohli K, Garabedian MJ, Stallcup MR. GRIP1, a transcriptional coactivator for the AF-2 transactivation domain of steroid, thyroid, retinoid, and vitamin D receptors. Mol Cell Biol 1997;17:2735-2744.Google Scholar
  79. 79.
    Chen H, Lin RJ, Schiltz RL, Chakravarti D, Nash A, Nagy L, Privalsky ML, Nakatani Y, Evans RM. Nuclear receptor coactivator ACTR is a novel histone acetyltransferase and forms a multimeric activation complex with P/CAF and CBP/p300. Cell 1997;90:569-580.Google Scholar
  80. 80.
    Kornberg RD, Lorch Y. Twenty-Æve years of the nucleosome, fundamental particle of the eukaryote chromosome. Cell 1999;98:285-294.Google Scholar
  81. 81.
    Lavigne AC, Mengus G, Gangloff YG, Wurtz JM, Davidson I. Human TAFII55 interacts with the vitamin D3 and thyroid hormone receptors and with derivatives of the retinoid X receptor that have altered transactivation properties. Mol Cell Biol 1999;19:5486-5494.Google Scholar
  82. 82.
    Mengus G, May M, Carre L, Chambon P, Davidson I. Human TAFII135 potentiates transcriptional activation by the AF-2s of the retinoic acid, vitamin D3, and thyroid hormone receptors in mammalian cells. Genes Dev 1997;11:1381-1395.Google Scholar
  83. 83.
    Rachez C, Lemon BD, Suldan Z, Bromleigh V, Gamble M, Näär AM, Erdjument-Bromage H, Tempst P, Freedman LP. Liganddependent transcription activation by nuclear receptors requires the DRIP complex. Nature 1999;398:824-828.Google Scholar
  84. 84.
    Blanco JCG, Wang I-M, Tsai SY, Tsai M-J, O'Malley BW, Jurutka PW, Haussler MR, Ozato K. Transcription factor TFIIB and the vitamin D receptor cooperatively activate ligand-dependent transcription. Proc Natl Acad Sci USA 1995;92:1535-1539.Google Scholar
  85. 85.
    MacDonald PN, Sherman DR, Dowd DR, Jefcoat SC, Jr., DeLisle RK. The vitamin D receptor interacts with general transcription factor IIB. J Biol Chem 1995;270:4748-4752.Google Scholar
  86. 86.
    DeLisle RK, MacDonald PN. Characterization of domains of the vitamin D receptor required for interaction with basal transcription factor IIB. Bone 1998;23, (Suppl. 5):S199(abstract 1208).Google Scholar
  87. 87.
    Baudino TA, Kraichely DM, Jefcoat SC, Jr., Winchester SK, Partridge NC, MacDonald PN. Isolation and characterization of a novel coactivator protein, NCoA-62, involved in vitamin Dmediated transcription. J Biol Chem 1998;273:16434-16441.Google Scholar
  88. 88.
    Weiss RE, Xu J, Ning G, Pohlenz J, O'Malley BW, Refetoff S. Mice deficient in the steroid receptor co-activator 1 (SRC-1) are resistant to thyroid hormone. EMBO J 1999;18:1900-1904.Google Scholar
  89. 89.
    Mackey SL, Heymont JL, Kronenberg HM, Demay MB. Vitamin D receptor binding to the negative human parathyroid hormone vitamin D response element does not require the retinoid X receptor. Mol Endocrinol 1996;10:298-305.Google Scholar
  90. 90.
    Tagami T, Lutz WH, Kumar R, Jameson JL. The interaction of the vitamin D receptor with nuclear receptor corepressors and coactivators. Biochem Biophys Res Commun 1998;253:358-363.Google Scholar
  91. 91.
    Yanagisawa J, Yanagi Y, Masuhiro Y, Suzawa M, Watanabe M, Kashiwagi K, Toriyabe T, Kawabata M, Miyazono K, Kato S. Convergence of transforming growth factor-β and vitamin D signaling pathways on SMAD transcriptional coactivators. Science 1999;283:1317-1321.Google Scholar
  92. 92.
    Dusso AS, Kamimura S, Gallieni M, Zhong M, Negrea L, Shapiro S, Slatopolsky E. gamma-Interferon-induced resistance to 1,25-(OH)2D3 in human monocytes and macrophages: A mechanism for the hypercalcemia of various granulomatoses. J Clin Endocrinol Metab 1997;82:2222-2232.Google Scholar
  93. 93.
    van de Kerkhof PC. An update on vitamin D3 analogs in the treatment of psoriasis. Skin Pharmacol Appl Skin Physiol 1998;11:2-10.Google Scholar
  94. 94.
    Dawson-Hughes B, Harris SS, Finneran S. Calcium absorption on high and low calcium intakes in relation to vitamin D receptor genotype. J Clin Endocrinol Metab 1995;80:3657-3661.Google Scholar
  95. 95.
    Ferrari S, Rizzoli R, Chevalley T, Slosman D, Eisman JA, Bonjour JP. Vitamin-D-receptor-gene polymorphisms and change in lumbar-spine bone mineral density. Lancet1995;345:423-424.Google Scholar
  96. 96.
    Park BS, Park JS, Lee DY, Youn JI, Kim IG. Vitamin D receptor polymorphism is associated with psoriasis. J Invest Dermatol 1999;112:113-116.Google Scholar
  97. 97.
    Feldman D. Androgen and vitamin D receptor gene polymorphisms: The long and short of prostate cancer risk. J Natl Cancer Inst 1997;89:109-111.Google Scholar
  98. 98.
    Ruggiero M, Pacini S, Aterini S, Fallai C, Ruggiero C, Pacini P. Vitamin D receptor gene polymorphism is associated with metastatic breast cancer. Oncol Res 1998;10:43-46.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Peter W. Jurutka
    • 1
  • G. Kerr Whitfield
    • 1
  • Jui-Cheng Hsieh
    • 1
  • Paul D. Thompson
    • 1
  • Carol A. Haussler
    • 1
  • Mark R. Haussler
    • 1
  1. 1.Department of Biochemistry and Molecular Biophysics, College of MedicineUniversity of ArizonaTucson

Personalised recommendations