Skip to main content
Log in

Strain Directed Assembly of Nanoparticle Arrays Within a Semiconductor

  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The use of strain to direct the assembly of nanoparticle arrays in a semiconductor is investigated experimentally and theoretically. The process uses crystal strain produced by a surface structure and variations in layer composition to guide the formation of arsenic precipitates in a GaAs-based structure grown at low temperature by molecular beam epitaxy. Remarkable patterning effects, including the formation of single and double one-dimensional arrays with completely clear fields are achieved for particles in the 10-nm size regime at a depth of about 50-nm from the semiconductor surface. Experimental results on the time dependence of the strain patterning indicates that strain controls the late stage of the coarsening process, rather than the precipitate nucleation. Comparison of the observed particle distributions with theoretical calculations of the stress and strain distributions reveals that the precipitates form in regions of maximum strain energy, rather than near extremum points of hydrostatic stress or dilatation strain. It is therefore concluded that the patterning results from modulus differences between the particle and matrix materials rather than from other strain related effects. The results presented here should be useful for extending strain directed assembly to other materials systems and to other configurations of particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Alivisatos A.P., 1996. Perspectives on the physical chemistry of semiconductor nanocrystals. J. Phys. Chem. 100, 13226–13239.

    Google Scholar 

  • Baker S.P. & W.D. Nix, 1990. Mechanical properties of thin films on substrates. SPIE Optical Thin Films III: New Developments, 263.

  • Bliss D.E., W. Walukiewicz, I.J.W. Ager, E.E. Haller, K.T. Chan & S. Tanigawa, 1992. Annealing studies of low-temperaturegrown GaAs: Be. J. Appl. Phys. 71, 1699.

    Google Scholar 

  • Claverie A. & Z. Liliental-Weber, 1992. Structure and orientation of As precipitates in GaAs grown at low temperature by molecular beam epitaxy. Philos. Mag. A 65, 981.

    Google Scholar 

  • Fleischer R.L., 1961. Solution hardening. Acta Metallurgica 9(11), 996.

    Google Scholar 

  • Hung C.-Y., J.S. Harris, A.F. Marshall & R.A. Kiehl, 1997. Arsenic Precipitation in GaAs for Single-electron Tunneling Applications. Intl. Symp. Compound Semiconductors, San Diego, Calif.

  • Hung C.-Y., J.S. Harris, A.F. Marshall & R.A. Kiehl, 1998. Annealing cycle dependence of preferential arsenic precipitation in AlGaAs/GaAs layers. Appl. Phys. Lett. 73(3), 330–332.

    Google Scholar 

  • Ibbetson J.P., J.S. Speck, N.X. Nguyen & A.C. Gossard, 1993. The role of microstructure in the electrical properties of GaAs grown at low temperature. J. Electronic Materials 22, 1421–1424.

    Google Scholar 

  • Kaminska M., Z. Liliental-Weber, E.R. Weber, T. George, J.B. Kortright, F.W. Smith, B.Y. Tsaur & A.R. Calawa, 1989. Structural properties of As-rich GaAs grown by molecular beam epitaxy at low temperatures. Appl. Phys. Lett. 54, 1881.

    Google Scholar 

  • Kiehl R.A., M. Saito, M. Yamaguchi, O. Ueda & N. Yokoyama, 1995. Lateral patterning of arsenic precipitates in GaAs by a surface stress structure. Appl. Phys. Lett. 66, 2194.

    Google Scholar 

  • Kiehl R.A., M. Yamaguchi, O. Ueda, N. Horiguchi & N. Yokoyama, 1996. Patterned self-assembly of onedimensional arsenic particle arrays in GaAs by controlled precipitation. Appl. Phys. Lett. 68(4), 478–480.

    Google Scholar 

  • Lifshitz I.M. & V.V. Slyozov, 1961. J. Phys. Chem. Solids 19, 35.

    Google Scholar 

  • Likharev K.K., 1999. Single-electron devices and their applications. Proc. IEEE 87(April), 633–651.

    Google Scholar 

  • Liliental-Weber Z., G. Cooper, J.R. Mariella & C. Kocot, 1991. The role of As in molecular-beam epitaxy GaAs layers grown at low temperature. J. Vac. Sci. Technol. B 9, 2323.

    Google Scholar 

  • Liu X., A. Prasad, J. Nishio, E.R. Weber, Z. Liliental-Weber & W. Walukiewicz, 1995. Native point defects in low-temperature-grown GaAs. Appl. Phys. Lett. 67, 279.

    Google Scholar 

  • Look D.C., D.C. Walters, M.O. Manasreh, J.R. Sizelove, C.E. Stutz & K.R. Evans, 1990. Anomalous Hall-effect results in low-temperature molecular beam epitaxial GaAs: hopping in a dense EL2-like band. Phys. Rev. B 42, 3578.

    Google Scholar 

  • Mahalingam K., N. Ostsuka, M.R. Melloch, J.M. Woodall & A.C. Warren, 1992. Arsenic precipitate accumulation and depletiion zones at AlGaAs/GaAs heterojunctions grown at low substrate temperature by molecular beam epitaxy. J. Vac. Sci. Technol. B 10, 812.

    Google Scholar 

  • MARC, 1988. MARC finite element program. Palo Alto, CA, MARC Analysis Research Corporation.

    Google Scholar 

  • Melloch M.R., N. Otsuka, K. Mahalingam, A.C. Warren, J.M. Woodall & P.D. Kirchner, 1992. Incorporation of excess arsenic in GaAs and AlGaAs epilayers grown at low substrate temperatures by molecular beam epitaxy. Mater. Res. Soc. Sym. Proc. 241, 113.

    Google Scholar 

  • Neuberger M., 1971. Handbook of Electronic Materials, IFI/Plenum Data Corporation.

  • Porter D.A. & K.E. Easterling, 1991. Phase Transformation in Metals and Alloys, Chapman and Hall, International Publications.

  • Timoshenko S.P. & J.N. Goodier, 1970. Theory of Elasticity, McGraw-Hill Book Company.

  • Walle C.G. V.d., 1989. Band lineups and deformation potentials in the model-solid theory. Phys. Rev. B 39, 1871.

    Google Scholar 

  • Xu Z. & P.M. Petroff, 1991. Strain-induced carrier confinement in a buried stressor structure. J. Appl. Phys. 69, 6564.

    Google Scholar 

  • Yu K.M., M. Kaminska & Z. Liliental-Weber, 1992. Characterization of GaAs layers grown by low temperature molecular beam epitaxy using ion beam techniques. J. Appl. Phys. 72, 2850.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hung, CY., Marshall, A., Kim, DK. et al. Strain Directed Assembly of Nanoparticle Arrays Within a Semiconductor. Journal of Nanoparticle Research 1, 329–347 (1999). https://doi.org/10.1023/A:1010052731395

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010052731395

Navigation