Skip to main content
Log in

Smoothness in Bayesian Non-parametric Regression with Wavelets

  • Published:
Methodology And Computing In Applied Probability Aims and scope Submit manuscript

Abstract

Consider the classical nonparametric regression problem yi = f(ti) + ɛii = 1,...,n where ti = i/n, and ɛi are i.i.d. zero mean normal with variance σ2. The aim is to estimate the true function f which is assumed to belong to the smoothness class described by the Besov space B qpq . These are functions belonging to Lp with derivatives up to order s, in Lp sense. The parameter q controls a further finer degree of smoothness. In a Bayesian setting, a prior on B qpq is chosen following Abramovich, Sapatinas and Silverman (1998). We show that the optimal Bayesian estimator of f is then also a.s. in B qpq if the loss function is chosen to be the Besov norm of B qpq . Because it is impossible to compute this optimal Bayesian estimator analytically, we propose a stochastic algorithm based on an approximation of the Bayesian risk and simulated annealing. Some simulations are presented to show that the algorithm performs well and that the new estimator is competitive when compared to the more standard posterior mean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • F. Abramovich, T. Sapatinas, and B.W. Silverman, “Wavelet thresholding via a Bayesian approach, ” J. Roy. Stat. Soc. vol. B 60 pp. 725–749, 1998.

    Google Scholar 

  • J. Bergh and J. Löfström, Interpolation spaces, Springer-Verlag: Berlin, 1976.

    Google Scholar 

  • H. A. Chipman, E. D. Kolaczyk, and R. E. McCullooch, “Adaptive Bayesian wavelet shrinkage, ” Technical report 421, Department of Statistics, Chicago University, USA, 1996.

    Google Scholar 

  • C. K. Chui, An Introduction to Wavelets, Academic Press: New York, 1992.

    Google Scholar 

  • M. Clyde, G. Parmigiani, and B. Vidakovic, “Multiple shrinkage and subset selection in wavelets, ” Technical report 95–37, ISDS, Duke University, USA, 1995.

    Google Scholar 

  • I. Daubechies, Ten lectures on Wavelets, SIAM, 1992.

  • I. Daubechies, “Orthonormal bases of compactly supported wavelets II: Variations on a theme, ” J. Math. Anal. vol. 24 SIAM, pp. 499–519, 1993.

    Google Scholar 

  • R. A. DeVore and V. A. Popov, “Interpolation of Besov spaces, ” Trans. Am. Math. Soc. vol. 305 pp. 397–414, 1988.

    Google Scholar 

  • R. A. DeVore, B. Jawerth, and V. A. Popov, “Compression of wavelet decomposition, ” Amer. Journ. of Mathematics vol. 114 pp. 737–785, 1992.

    Google Scholar 

  • D. L. Donoho and I. M. Johnstone, “Ideal spatial adaptation by wavelet shrinkage, ” Biometrika vol. 81 (3) pp. 425–455, 1994.

    Google Scholar 

  • D. L. Donoho, I. M. Johnstone, G. Kerkyacharian, and D. Picard, “Wavelet shrinkage: asymptopia?” J. Roy. Stat. Soc. vol. B 57(2) pp. 301–369, 1995.

    Google Scholar 

  • D. L. Donoho and I. M. Johnstone, “Minimax estimation via wavelet shrinkage, ” Ann. Statis., vol. 26(3), 1998.

  • D. L. Donoho and I. M. Johnstone, “Adapting to unknown smoothness via wavelet shrinkage, ” J. of American Stat. Assoc. vol. 90 pp. 1200–1224, 1995.

    Google Scholar 

  • W. Härdle, G. Kerkyacharian, D. Picard, and A. Tsybakov, Wavelets, Approximation and Statistical Applications, Lecture Notes in statistics 103, Springer, Heidelberg, 1998.

    Google Scholar 

  • S. G. Mallat, “A theory for multiresolution signal decomposition: the wavelet representation, ” IEEE Trans. Pattern Analysis Machine Intelligence vol. 11 pp. 674–693, 1989.

    Google Scholar 

  • Y. Meyer, Ondelettes et Opérateurs, Hermann: Paris, 1990.

    Google Scholar 

  • J. Peetre, “New thoughts on Besov spaces, ” Duke Univ. Math. Series 1, 1976.

  • H. Rue, “New loss functions in Bayesian imaging, ” J. of American Stat. Assoc. vol. 90 pp. 900–908, 1995.

    Google Scholar 

  • H. Triebel, Theory of function spaces II, Birkhäuser: Basel, 1990.

    Google Scholar 

  • B. Vidakovic, “Non-linear wavelet shrinkage with Bayes rules and Bayes factors, ” J. of American Stat. Assoc.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zio, M.D., Frigessi, A. Smoothness in Bayesian Non-parametric Regression with Wavelets. Methodology and Computing in Applied Probability 1, 391–405 (1999). https://doi.org/10.1023/A:1010038117836

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010038117836

Navigation