Skip to main content
Log in

Localisation of Large Scale Structures in a Supersonic Mixing Layer: A New Method and First Analysis

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

The space-time description of the organised structures in a supersonic mixing layer with a convective Mach number of 0.6 is given. Fourier analysis gives some evidence of the existence of large scales nearly periodic in time, but gives only global information on length and velocity scales. A new method based on the wavelet transform is then proposed to perform a space-time analysis localised in time. It is used to detect and to analyse such structures, in particular to determine their convection velocity. Characteristic time and length scales are given and compared with the scales deduced from the spectral analysis. The results are used to extract the contribution of the large scales to the turbulence signal. The flow under examination has a convective Mach number of 0.6. Therefore, in contrast with subsonic mixing layers, there are probably significant three-dimensional effects. Results on spacing between large eddies are discussed in terms of merging processes and of three-dimensional effects. A conclusion is that diffusion and/or entrainment are modified rather than the type and frequency of merging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dupont, P., Muscat, P. and Dussauge, J.P., Time and space-time statistics in a supersonic mixing layer. In: Kral, L.D., Spina, E.F. and Arakawa, C. (eds), Proceedings Second Symposium on Transitional and Turbulent Compressible Flows, Joint ASME/JSME Fluids Engineering Conference, Hilton Heads, SC, August. ASME, New York (1995) pp. 117-122.

    Google Scholar 

  2. Clemens, N.T. and Mungal, M.G., Large-scale structure and entrainment in the supersonic mixing layer. J. Fluid Mech. 284 (1995) 171-216.

    Google Scholar 

  3. Blumen, W., Drazin, P.G. and Billings, D.F., Shear layer instability of an inviscid compressible fluid, Part 2. J. Fluid Mech. 71 (1975) 305-316.

    Google Scholar 

  4. Comte, P., Fouillet, Y. and Lesieur, M., Simulation numérique des zones de mélange compressibles. Revue Scientifique et Technique de la Défense 18 (1992) 43-63.

    Google Scholar 

  5. Hussain, A.K.F.M., Coherent structures, reality and myth. Phys. Fluids 26 (1983) 2816-2850.

    Google Scholar 

  6. Farge, M., Kevlahan, N., Perrier, V. and Goirand, E., Wavelet and turbulence. Proceedings of the IEEE (Special Issue on Wavelets) 84(4) (1996) 639-669.

    Google Scholar 

  7. Bonnet, J.P., Debisschop, J.R. and Chambres, 0., Experimental studies of the turbulent structures of supersonic mixing layers. AIAA Paper No. 93-0217 (1993).

  8. Chambres, 0., Analyse expérimentale de la modélisation de la turbulence en couche de mélange supersonique. Thèse de Doctorat de L'Université de Poitiers (1997).

  9. Samimy, M., Elliot, G.S. and Arnette, S.A., Identification of large structures in compressible mixing using filtered Rayleigh scattering. In: Bonnet, J.P. and Glakser, M.N. (eds), IUTAM Eddy Structure Identification in Free Turbulent Shear Flows, Poitiers. Kluwer Academic Publishers, Dordrecht (1993) pp. 475-486.

    Google Scholar 

  10. Papamoschou, D. and Roshko, A., The compressible turbulent shear layer: an experimental study. J. Fluid Mech. 197 (1988) 453-477.

    Google Scholar 

  11. Muscat, P., Structures à grandes échelles dans une couche de mélange supersonique, Analyse de Fourier et analyse en ondelette. Thèse de Doctorat, Université de la Méditerranée, Marseille (1998).

    Google Scholar 

  12. Liandrat, J., Some algorithms for turbulence analysis and modeling. In: Erlebacher, G., Hussaini, N.M. and Jameson, L. (eds), Wavelets, Theory and Applications, Oxford University Press, Oxford (1996) pp. 317-347.

    Google Scholar 

  13. Menaa, M., Étude expérimentale d'une couche de mélange turbulente supersonique et analyse des propriétés de similitude, Thèse de Doctorat, Universé de Provence, Marseille (1997).

    Google Scholar 

  14. Wyngaard, J.C., Measurements of small-scale turbulence structure with hot wires. J. Sci. Instruments: J. Phys. E, Series 2 1 (1968) 1105-1108.

    Google Scholar 

  15. Perrier, V., Ondelettes en simulation numérique. Thèse de Doctorat, Université de Paris VI (1991).

  16. Daubechies, I., Ten Lectures on Wavelets. SIAM, Philadelphia, PA (1992).

    Google Scholar 

  17. Liandrat, J., Some algorithms for turbulence analysis and modeling. In: Erlebacher, G., Hussaini, Y.M. and Jameson, L. (eds), Wavelets, Theory and Applications, Oxford University Press, Oxford (1996) pp. 317-347.

    Google Scholar 

  18. Muscat, P., Dussoulliez, P., Dupont, P. and Liandrat, J., Coherent structures detection method using wavelet transform. In: Sorensen, J., Hopfinger, E. and Aubry, N. (eds), Proceedings of the IUTAM Symposium on Simulation and Identification of Organized Structures in Flows, Lyngby, May 1997. Kluwer Academic Publishers, Dordrecht (1999) pp. 419-429

    Google Scholar 

  19. Dupont, P., Muscat, P. and Dussauge, J.P., Properties of energetic scales in a supersonic mixing layer. In: Champion, M. and Deshaies, B. (eds), Proceedings of the IUTAM Symposium on Combustion in Supersonic Flows, Poitiers, October 1995. Kluwer Academic Publishers, Dordrecht (1997) pp. 309-316.

    Google Scholar 

  20. Muscat, P., Dupont, P. and Dussauge, J.P., Characaterization of large scale eddies in a supersonic turbulent mixing layer: Identification and statistical properties. In: Takayama, K. (ed.) 2nd International Workshop on Shock Vortex Interaction, Tohoku University, Sendai, Japan, October. Tohoku University (1997) pp. 31-47.

  21. Bisset, D.K., Antonia, R.A. and Brown, L.W.B., Spatial average of large structures in a turbulent far wake. J. Fluid Mech. 212 (1990) 349-361.

    Google Scholar 

  22. Bonnet, J.P., Delville, J., Glauser, M.N., Antonia, R.A., Bisset, D.K., Cole, D.R., Fiedler, H.E., Garem, J.H., Hilberg, D., Jeong. J., Kevlahan, N.K.R., Ukelley, L.S. and Vincendeau, E., Collaborative testing of eddy structure identification methods in free turbulent shear flows. Exp. Fluids 25 (1998) 197-225.

    Google Scholar 

  23. Browand, F.K. and Troutt, T.R., The turbulent mixing layer: Geometry of large vortices. J. Fluid Mech. 158 (1985) 489-509.

    Google Scholar 

  24. Bernal, L.P., The statistics of the organized vortical structure in turbulent mixing layers. Phys. Fluids 31(9) (1988) 2533-2543.

    Google Scholar 

  25. Ramaprian, B.R., Sandham, M.D., Mungal, M.G. and Reynolds, W.C., Passive scalar tagging for the study of coherent structures in the plane mixing layer. Phys. Fluids 1(12) (1989) 2034-2041.

    Google Scholar 

  26. Dutton, J.C., Compressible turbulent free shear layers. In: Knight, D. (ed.), Turbulence in Compressible Flows. AGARD Report 819 (1997) pp. 2.1-2.42.

  27. Maslowe, S.A. and Kelly, R.E., Inviscid instability of an unbounded heterogeneous shear layer. J. Fluid Mech. 48 (1971) 405-415.

    Google Scholar 

  28. Brown, G.L. and Roshko, A., On density effects and large structure in turbulent mixing layers. J. Fluid Mech. 64 (1974) 775-816.

    Google Scholar 

  29. Dimotakis, P.E., Turbulent free shear layer mixing and combustion. In: Murthy, S.N.B. and Curran, E.T. (eds) Progress in Astronautics and Aeronautics, Vol. 137, AIAA, Washington DC (1991) pp. 265-340.

    Google Scholar 

  30. Smits, A.J. and Dussauge, J.P., Turbulent Shear Layer in Supersonic Flow. AIP Press, American Institute of Physics, Woodbury, NY (1996).

    Google Scholar 

  31. Dimotakis, P.E., Two-dimensional shear layer entrainment. AIAA J. 24(11) (1986) 1791-1796.

    Google Scholar 

  32. Kevlahan, N.K.R., Private communication (1999). See also report on N. Kevlahan's web site http://icarus.math.mcmaster.ca/kevla/

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dupont, P., Muscat, P. & Dussauge, J. Localisation of Large Scale Structures in a Supersonic Mixing Layer: A New Method and First Analysis. Flow, Turbulence and Combustion 62, 335–358 (1999). https://doi.org/10.1023/A:1009979903970

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009979903970

Navigation