Skip to main content
Log in

Bedside Clinical Chemistry: From Catheter Tip Sensor Chips Towards Micro Total Analysis Systems

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

With the start of the development of tiny chip chemical sensors in the seventies and eighties, which can easily be mounted in the tip of a catheter, it was thought that clinical chemistry would enter the operating theatre, the intensive care unit, etc. Continuous in vivo monitoring of many important blood variables should replace the sample technique with off-line laboratory determinations. However, problems with sensor stability and biocompatibility prevented this development.

At the present moment a new field of research is unfolding rapidly: the micro Total Analysis Systems (μTAS). The result is that very small equipment for (bio)chemical analysis becomes available, operating completely automatic, because it contains all necessary components in one liquid handling board, like sample inlet facilities, micropumps, micromixers/reactors, sensors and the control electronics. These micro systems can operate without the necessity of being handled by trained laboratory personnel and are thus suitable for bedside monitoring. The state of the art in the field of μTAS will be discussed in this paper, with emphasis on suitability for continuous monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.H. Bau, B. Kloeck, and N.F. de Rooij (Editors), Mechanical Sensors, vol 7 of Sensors, A comprehensive survey (VCH, Weinheim, 1994) ISBN 3-527-26773-5.

  2. P. Bergveld and A.P.F. Turner, Fabrication and Mass Production, Chapter 6 in Advances in Biosensors, Supplement 1, Ed. A.P.F. Turner, (JA1 Press, London, 1993) ISBN 1-55938-630-4.

    Google Scholar 

  3. K.O. Kyvik, J. Traulsen, B. Reinholdt, and A. Froland, The Exac Tech blood glucose testing system Diabetes Res. and Clin Practice 10/1, 85-90 (1990).

    Google Scholar 

  4. R.E.G. van Hal, J.C.T. Eijkel, and P. Bergveld, A general model to describe the electrostatic potential at electrolyte oxide interfaces Advances in colloid and interface science 69, 31-62 (1996).

    Google Scholar 

  5. P. Bergveld, J. Hendrikse, and W. Olthuis, Theory and application of the material work function for chemical sensors, based on the field effect principle Meas. Sci. Technol. 9, 1801-1808 (1998).

    Google Scholar 

  6. W. Olthuis, B.H. van der Schoot, F. Chavez, and P. Bergveld, A dipstick sensor for coulometric acid-base titrations Sensors and Actuators 17, 229-283 (1989).

    Google Scholar 

  7. B.H. van der Schoot and P. Bergveld, Coulometric sensors; the application of a sensor-actuator system for long-term stability in chemical sensing Sensors and Actuators 13, 251-262 (1988).

    Google Scholar 

  8. B.H. van der Schoot and P. Bergveld, ISFET based enzyme sensors Biosensors 3, 161-186 (1988).

    Google Scholar 

  9. A. van den Berg and P. Bergveld (Editors), Micro Total Analyzis Systems (Kluwer Academic Publishers, Dordrecht/Boston/London, 1995) ISBN 0-7923-3217-2.

    Google Scholar 

  10. D.J. Harrison and A. van den Berg (Editors), Micro Total Analyzis Systems '98 (Kluwer Academic Publishers, Dordrecht/Boston/London, 1998) ISBN 0-7923-5322-6.

    Google Scholar 

  11. M. Elwenspoek and H. Jansen, Silicon micromachining (Cambridge University Press, 1998) ISBN 0-521-59054.

  12. T. Desai, D. Hansford, and M. Ferrari, Characterization of micromachined silicon membranes for immune isolation and bioseparation applications Journal of Membrane Science, 1-11 (1999).

  13. G. Kittilsland and G. Stemme, A sub-micron particle filter in silicon Sensors and Actuators A21–A23, 904-907 (1990).

    Google Scholar 

  14. M.J. de Boer, N. Brandenburg, R.A. Panhuyzen, and T.M. Klapwijk, Submicron patterning of Nb using CF3Br and a single layer resist Microelectr. Eng. 13, 463-467 (1991).

    Google Scholar 

  15. Y. Fintschenko, P. Fowler, V. Spiering, G-J. Burger, and A. van den Berg, Characterization of silicon-based insulated channels for capillary electrophoresis in A. van den Berg (Editors), Micro Total Analyzis Systems '98 (Kluwer Academic Publishers, Dordrecht/Boston/London, 1998) ISBN 0-7923-5322-6 ref. 10, 327-330.

    Google Scholar 

  16. R.W. Tjerkstra, M. de Boer, E. Berenschot, J.G.E. Gardeniers, A. van den Berg, and M.C. Elwenspoek, Etching technology for chromatography microchannels Electrochim. Act 42, 3399-3406 (1997).

    Google Scholar 

  17. G.J. Burger, V. Spiering, T. Korthorst, and J. Virst, Prototype of a bi-stable microvalve for fluids using micro-system technology Nexus Research News nr.2, 21-23 (1999).

    Google Scholar 

  18. J.G. Smits, Piezoelectric pump for peristaltic fluid displacements, Dutch patent 8302860 (1985).

  19. H.T.G. van Lintel, F.C.M. van de Pol, and S. Bouwstra, A piezoelectric micropump based on micromachining of silicon Sensors and Actuators 15, 153-167 (1988).

    Google Scholar 

  20. P. Woias, R. Linneman, M. Richter, A. Leistner, and B. Hillerich, A silicon micropump with a high bubble tolerance and self-priming capability in A. van den Berg (Editors), Micro Total Analyzis Systems '98 (Kluwer Academic Publishers, Dordrecht/Boston/London, 1998) ISBN 0-7923-5322-6 ref. 10, 383-386.

    Google Scholar 

  21. A. Olsson, P. Enoksson, G. Stemme, and E. Stemme, A valve-less planar pump, isotropically etched in silicon J. Micromech. Microeng. 6, 87-91 (1996).

    Google Scholar 

  22. S-H. Ahn and Y-K. Kim, Fabrication and experiment of planar micro ion drag pump, Proc. of Int. Conf. on Solid-State Sensors and Actuators (Transducers '97) 373-376 (1997).

  23. H. Carchon and E. Eggermont, Capillary Electrophoresis Int. Chromatography Laboratory vol 6, 17-22 (1991).

    Google Scholar 

  24. C.L. Rice and R. Whitehead, Electrokinetic flow in a narrow cylindrical capillary The journal of physical chemistry 69(11), 4017-4024 (1965).

    Google Scholar 

  25. J.P. Brody, P. Yager, R.E. Goldstein, and R.H. Austin, Biotechnology at low Reynolds numbers Biophysical Journal 71, 3430-3441 (1996).

    Google Scholar 

  26. D.J. Harrison, A. Manz, Z. Fan, H. Ludi, and J.M. Widmer, Capillary electrophoresis and sample injection systems integrated on a planar glass chip Anal. Chem. 64, 1926-1932 (1992).

    Google Scholar 

  27. S. Böhm, W. Olthuis, and P. Bergveld, An integrated micromachined electrochemical pump and dosing system Journal of Biomedical Microdevices 1:2, 121-130 (1999).

    Google Scholar 

  28. J. Branebjerg, P. Gravesen, J.P. Krog, and C.R. Nielsen, Fast mixing by lamination Proc. IEEE-MEMS'96 Workshop 441-446 (1996).

  29. R. Miyake, T.S.J. Lammerink, M. Elwenspoek, and J.H.J. Fluitman, Micromixer with fast difussion Proc. IEEE-MEMS'93 Workshop 248-253 (1993).

  30. B.H. van der Schoot, J. Jeanneret, A. van den Berg, and N.F. De Rooij, Microsystems for Flow Injection Analysis Analytical Methods and Instrumentation 1,(1), 38-42 (1993).

    Google Scholar 

  31. J.H.J. Fluitman, A. van den Berg, and T.S. Lammerink, Micromechanical components for μTAS in P. Bergveld (Editors), Micro Total Analyzis Systems (Kluwer Academic Publishers, Dordrecht/Boston/London, 1995) ISBN 0-7923-3217-2 ref. 9, 73-83.

    Google Scholar 

  32. P. Bergveld, S. Bohm, and W. Olthuis, Microdialysis-probe integrated with a Si-chip Patent nr. wo99/41606.

  33. S. Böhm, W. Olthuis, and P. Bergveld, A μTAS based on microdialysis for on-line monitoring of clinically relevant substances in A. van den Berg (Editors), Micro Total Analyzis Systems '98 (Kluwer Academic Publishers, Dordrecht/Boston/London, 1998) ISBN 0-7923-5322-6 ref. 10, 31-34.

    Google Scholar 

  34. H.M. Widmer, E. Verpoorte, and S. Barnard, (Editors), Analytical Methods and Instrumentation Special Issue (1996).

  35. K.A. Erickson and P. Wilding, Evaluation of a novel point-of-care system, the i-stat portable clinical analyzer Clin. Chem. 39/2, 283-287 (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bergveld, P. Bedside Clinical Chemistry: From Catheter Tip Sensor Chips Towards Micro Total Analysis Systems. Biomedical Microdevices 2, 185–195 (2000). https://doi.org/10.1023/A:1009976328558

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009976328558

Navigation