Skip to main content

Bioenergetic food webs as a means of linking toxicological effects across scales of ecological organization

Abstract

Although significant progress has been made in ourability to predict population-level consequences oftoxic effects on individuals, extending thispredictive ability to communities, functional guilds,and ecosystems will require more integration ofecological theory into environmental science. Bioenergetics and food webs have long been centralthemes in ecology and greatly expanded ourunderstanding of nature. Although numerousenergetic-based toxicological endpoints have beendeveloped, few have extended this framework beyond theindividual level. Most energetic endpoints includeindividual growth, and only occasionally is thisintegrated with population dynamics. However,population-level energetic analyses (e.g., secondaryproduction) integrate individual and populationprocesses, and provide two key parameters: consumptionand energy flow. Within a food web framework,estimates of consumption and energy flow throughpopulations facilitate linking population-levelcontaminant effects to ecosystem-level effects. Several examples are given to illustrate the utilityof this approach.

This is a preview of subscription content, access via your institution.

References

  • Abrams, P.A., B.A. Menge, G.G. Mittelbach, D.A. Spiller & P. Yodzis, 1996. The role of indirect effects in food webs. In: G.A. Polis & K.O. Winemiller (eds), Food Webs: Integration of Patterns and Dynamics, Chapman and Hall, New York, pp. 371–395.

    Google Scholar 

  • Benke, A.C., 1993. Concepts and patterns of invertebrate production in running waters. Edgardo Baldi Memorial Lecture. Verh. Internat. Verein. Limnol. 25: 15–38.

    Google Scholar 

  • Benke, A.C., 1996. Secondary production of macroinvertebrates. In: F.R. Hauer & G.A. Lamberti (eds), Methods in Stream Ecology, Academic Press, San Diego, CA, pp. 557–578

    Google Scholar 

  • Benke, A.C., C.A.S. Hall, C.P. Hawkins, R.H. Lowe-McConnel, J.A. Stanford, K. Suberkopp & J.V. Ward, 1988. Bioenergetic considerations in the analysis of stream ecosystems. Journal of the North American Benthological Society 7: 480–502.

    Google Scholar 

  • Benke, A.C. & J.B. Wallace, 1980. Trophic basis of production among net-spinning caddisflies in a southern Appalachian stream. Ecology 6: 108–118.

    Google Scholar 

  • Benke, A.C. & J.B. Wallace, 1997. Trophic basis of production among riverine caddisflies: implications for food web analysis. Ecology 78: 1132–1145.

    Google Scholar 

  • Beyers, D.W., J.A. Rice & W.H. Clements, 1999a. Evaluating biological significance of chemical exposure to fish using a bioenergetics-based stressor-response model. Canadian Journal of Fisheries and Aquatic Sciences 56: 823–829.

    Google Scholar 

  • Beyers, D.W., J.A. Rice, W.H. Clements & C.J. Henry, 1999b. Estimating physiological cost of chemical exposure: integrating energetics and stress to quantify toxic effects in fish. Canadian Journal of Fisheries and Aquatic Sciences. 56: 814–822.

    Google Scholar 

  • Cairns, J. Jr., 1983. Are single species toxicity tests alone adequate for estimating environmental hazard? Hydrobiologia 100: 47–57.

    Google Scholar 

  • Cairns, J. Jr., 1986. The myth of the most sensitive species. BioScience 36: 670–672.

    Google Scholar 

  • Cairns, J. Jr., 1989. Will the real ecotoxicologist please stand up? Environmental Toxicology and Chemistry 8: 843–844.

    Google Scholar 

  • Cairns, J. Jr. & J.R. Bidwell, 1996. The modification of human society by natural systems: discontinuities caused by the exploitation of endemic species and the introduction of exotics. Environmental Health Perspectives 104: 1142–1145.

    Google Scholar 

  • Cairns, J. Jr. & J.R. Pratt., 1989. The scientific basis of bioassays. Hydrobiologia 188/189 (Developments in Hydrobiology 54): 5–20.

    Google Scholar 

  • Camargo, J.A. & J.V. Ward, 1992. Differential sensitivity of Dugesia dorotocephala and Cheumatopsyche pettiti to water acidification: ecological implication for predator-prey interactions. Arch. Environ. Contam. Toxicol. 23: 59–63.

    Google Scholar 

  • Carpenter, S.R., J.F. Kitchel l/ & J.R. Hodgson, 1985. Cascading trophic interactions and lake productivity. BioScience 35: 634–639.

    Google Scholar 

  • Clements, W.H., 1997. Effects of contaminants at higher levels of biological organization in aquatic ecosystems. Reviews in Toxicology 1: 107–146.

    Google Scholar 

  • Clements, W.H. & P.M. Kiffney, 1994. Assessing contaminant effects at higher levels of biological organization. Environmental Toxicology and Chemistry 13: 357–359.

    Google Scholar 

  • Coyle, J.J., D.R. Buckler, C.G. Ingersoll, J.F. Fairchild & T.W. May, 1993. Effect of dietary selenium on the reproductive success on bluegills (Lepomis macrochirus). Environmental Toxicology and Chemistry 12: 551–565.

    Google Scholar 

  • Cranford, P.J., D.C. Gordon, K. Lee, S.L. Armsworthy & G.H. Tremblay, 1999. Chronic toxicity and physical disturbance effects of water-and oil-based drilling fluids and some major constituents on adult sea scallops (Placopecten Magellanicus). Marine Environmental Research 48: 225–256.

    Google Scholar 

  • Cuffney, T.F., J.B. Wallace & G.J. Lugthart, 1990. Experimental evidence quantifying the role of benthic invertebrates in organic matter dynamics of headwater streams. Freshwater Biology 23: 281–299.

    Google Scholar 

  • Culp, J.M., C.L. Podemski, K.J. Cash & R.B. Lowell, 2000. A research strategy for using microcosms in ecotoxicology: integrating experiments at different levels of biological organization with field data. Journal of Aquatic Ecosystem Stress and Recovery 7: 167–176.

    Google Scholar 

  • DeAngelis, D.L., 1995. Relationships between the energetics of species and large-scale species richness. In: C. Jones & J.H. Lawton (eds), Linking Species and Ecosystems, Chapman and Hall, New York, pp. 263–272.

    Google Scholar 

  • Eggleton, M.A., E.L. Morgan & W.L. Pennington, 1996. Effects of liming on an acid-sensitive southern Appalachian stream. Restoration Ecology 4: 247–263.

    Google Scholar 

  • Fairchild, J.F., T.W. La Point, J.L. Zajicek, M.K. Nelson, F.J. Dwyer & P.A. Lovely, 1992. Population-, community-and ecosystem-level responses of aquatic mesocosms to pulsed doses of a pyrethroid insecticide. Environmental Toxicology and Chemistry 11: 115–129.

    Google Scholar 

  • Fiance, S.B., 1978. Effects of pH on the biology and distribution of Ephemerella funeralis (Ephemeroptera). Oikos 31: 332–339.

    Google Scholar 

  • Fjellheim, A. & G.G. Raddum, 1996. Weir building in a regulated west Norwegian river: Long term dynamics of invertebrates and fish. Regulated Rivers Research and Management 12: 501–508.

    Google Scholar 

  • Fretwell, S.D., 1987. Food chain dynamics: the central theory of ecology? Oikos 50: 291–301.

    Google Scholar 

  • Fry, B., 1991. Stable isotope diagrams of freshwater food webs. Ecology 72: 2293–2297.

    Google Scholar 

  • Goodyear, C.P., 1972. A simple technique for detecting effects of toxicants or other stresses on a predator-prey interaction. Transactions of the American Fisheries Society: 367–370.

  • Gorham, C.T. & D.S. Vodopich, 1992. Effects of acidic pH on predation rates and survivorship of damselfly nymphs. Hydrobiologia 242: 51–62.

    Google Scholar 

  • Grimm, N.B., 1995. Why link species and ecosystems? A perspective from ecosystem ecology. In: C. Jones & J.H. Lawton (eds), Linking Species and Ecosystems, Chapman and Hall, New York, pp. 5–15.

    Google Scholar 

  • Hairston, N.G., F.G. Smith & L.B. Slobodkin, 1960. Community structure, population control, and competition. The American Naturalist 94: 421–425.

    Google Scholar 

  • Hairston, N.G., Jr. & N.G. Hairston, Sr., 1993. Cause-effect relationships in energy flow, trophic structure, and interspecific interactions. The American Naturalist 142: 379–411.

    Google Scholar 

  • Hall, S.J. & D.G. Raffaelli, 1993. Food webs: Theory and reality. Advances in Ecological Research 24: 187–239.

    Google Scholar 

  • Hatfield, C.T. & J.M. Anderson, 1972. Effects of two insecticides on the vulnerability of atlantic salmon (Salmo salar) parr to brook trout (Salvelinus fontinalis) predation. J. Fish. Res. Board Can. 29: 27–29.

    Google Scholar 

  • Herrmann, J. & K.G. Anderson, 1986. Aluminum impact on respiration of lotic mayflies at low pH. Water, Air, and Soil Pollution 30: 703–709.

    Google Scholar 

  • Hershey, A.E. & B.J. Peterson, 1996. Stream food webs. In: G.A. Polis & K.O. Winemiller (eds), Food Webs: Integration of Patterns and Dynamics, Chapman and Hall, New York, pp. 511–532.

    Google Scholar 

  • Hoffman, D.J., B.A. Rattner, G.A. Burton & J. Cairns, Jr., 1995. Handbook of Ecotoxicology, Lewis Publishers, Boca Raton, FL.

    Google Scholar 

  • Huryn, A.D., 1996. An appraisal of the Allen paradox in a New Zealand trout stream. Limnol. Oceanogr. 41: 243–252.

    Google Scholar 

  • Hutchinson, G.E., 1959. Homage to Santa Rosalia or why are there so many kinds of animals? The American Naturalist 93: 145–159.

    Google Scholar 

  • Jones, C.G. & J.H. Lawton, 1995. Linking Species and Ecosystems, Chapman and Hall, New York, NY.

    Google Scholar 

  • Kiffney, P.F. & W.H. Clements, 1994. Effects of heavy metals on a macroinvertebrate assemblage from a Rocky Mountain stream in experimental microcosms. Journal of the North American Benthological Society 13: 511–523.

    Google Scholar 

  • Kimball, K.D. & S.A. Levin, 1985. Limitations of laboratory bioassays: The need for ecosystem-level testing. BioScience 35: 165–171.

    Google Scholar 

  • Kitchell, J.F., 1983. Energetics. In: P.W. Webb & D. Weihs (eds), Fish Biomechanics, Praeger, New York, pp. 312–338.

    Google Scholar 

  • Kucklick, J.R., H.R. Harvey, P.H. Ostrom, N.E. Ostrom & J.E. Baker, 1996. Organochlorine dynamics in the pelagic food web of Lake Baikal. Environmental Toxicology and Chemistry 15: 1388–1400.

    Google Scholar 

  • Levin, S.A., 1992. The problem of pattern and scale in ecology. Ecology. 73: 1943–1967.

    Google Scholar 

  • Levin, S.A., K.D. Kimball, W.H. McDowell & S.F. Kimbal, 1984. New perspectives in ecotoxicology. Environmental Management 8: 375–442.

    Google Scholar 

  • Lindeman, R.L., 1942. The trophic-dynamic aspect of ecology. Ecology 23: 399–418.

    Google Scholar 

  • Linke-Gamenick, I., V.E. Forbes & R.M. Sibly, 1999. Density-dependent effects of a toxicant on life-history traits and population dynamics of a capitellid polychaete. Marine Ecology-Progress Series 184: 139–148.

    Google Scholar 

  • Luoma, S.N. & J.L. Carter, 1991. Effects of trace metals on aquatic benthos. In: M.C. Newman & A. McIntosh (eds), Metal Ecotoxicology: Concepts and Applications, Lewis Publishers, Chelsea, MI, pp. 261–300.

    Google Scholar 

  • MacArthur, R., 1955. Fluctuations of animal populations and a measure of community stability. Ecology 36: 533–536.

    Google Scholar 

  • Mageau, M.T., R. Costanza & R.E. Ulanowicz, 1998. Quantifying the trends expected in stressed ecosystems. Ecological Modelling 112: 1–22.

    Google Scholar 

  • Menge, B.A., B. Daley & P.A. Wheeler, 1996. Control of interaction strength in marine benthic communities. In: G.A. Polis & K.O. Winemiller (eds), Food Webs: Integration of Patterns and Dynamics, Chapman and Hall, New York, NY, pp. 258–274.

    Google Scholar 

  • Moriarty, F., 1988. Ecotoxicology: The Study of Pollutants in Ecosystems, Academic Press, London

    Google Scholar 

  • Newman, M.C., 1993. Quantitative Methods in Aquatic Ecotoxicology, Lewis Publishers, Boca Raton, FL.

    Google Scholar 

  • Odum, E.P., 1985. Trends expected in stressed ecosystems. BioScience 35: 419–422.

    Google Scholar 

  • Odum, H.T., 1957. Trophic structure and productivity of Silver Springs, Florida. Ecological Monographs 27: 55–112.

    Google Scholar 

  • Paine, R.T., 1992. Food-web analysis through field measurement of per capita interaction strength. Nature 355: 73–75.

    Google Scholar 

  • Parmelee, R.W., 1995. Soil fauna: Linking different levels of the ecological hierarchy. In: C.G. Jones & J.H. Lawton (eds), Linking Species and Ecosystems, Chapman and Hall, New York, pp. 107–117.

    Google Scholar 

  • Pennuto, C.M. & F. deNoyelles, Jr., 1993. Behavioral responses of Drunella coloradensis (Ephemeroptera) nymphs to short-term pH reductions. Canadian Journal of Fisheries and Aquatic Sciences 50: 2692–2697.

    Google Scholar 

  • Pimm, S.L., 1982. Food Webs, Chapman and Hall, London.

    Google Scholar 

  • Pimm, S.L., 1991. The Balance of Nature? University of Chicago Press, Chicago, IL.

    Google Scholar 

  • Pimm, S.L., J.H. Lawton & J.E. Cohen, 1991. Food web patterns and their consequences. Nature 350: 669–674.

    Google Scholar 

  • Polis, G.A. & K.O. Winemiller, 1996. Food Webs: Integration of Patterns and Dynamics, Chapman and Hall, New York, New York.

    Google Scholar 

  • Power, M.E., D. Tilman, J.A. Estes, B.A. Menge, W.J. Bond, L.S. Mills, G. Daily, J.C. Castilla, J. Lubchenco & R.T. Paine, 1996. Challenges in the quest for keystones. Bioscience 46: 609–620.

    Google Scholar 

  • Rowan, D.J. & J.B. Rasmussen, 1996. Measuring the bioenergetic cost of fish activity in situ using a globally dispersed radiotracer (137C). Canadian Journal of Fisheries and Aquatic Sciences 53: 734–745.

    Google Scholar 

  • Sandheinrich, M.B. & G.J. Atchison, 1989. Sublethal copper effects on bluegill, Lepomis macrochirus, foraging behavior. Canadian Journal of Fisheries and Aquatic Sciences 46: 1977–1985.

    Google Scholar 

  • Sarnelle, O., 1997. Daphnia effects on microzooplankton: comparisons of enclosure and whole-lake responses. Ecology 78: 913–928.

    Google Scholar 

  • Schindler, D.W., 1987. Detecting ecosystem responses to anthropogenic stress. Canadian Journal of Fisheries and Aquatic Sciences 44: 6–25.

    Google Scholar 

  • Schindler, D.W., 1998. Replication versus realism: the need for ecosystem-scale experiments. Ecosystem 1: 323–334.

    Google Scholar 

  • Schindler, D.W., K.H. Mills, D.F. Malley, D.L. Findlay, J.A. Shearer, I.J. Davies, M.A. Turner, G.A. Linsey & D.R. Cruikshank., 1985. Long-term ecosystem stress: The effects of years of acidification on a small lake. Science 228: 1395–1401.

    Google Scholar 

  • Schmidt, S.K., J.M. Hughs & S.E. Bunn, 1995. Gene flow among conspecifc populations of Baetis spp. (Ephemeroptera) – Adult fight and larval drift. Journal of the North American Benthological Society 14: 147–157.

    Google Scholar 

  • Sibley, P.K., G.T. Ankley, A.M. Cotter & E.N. Leonard, 1996. Predicting chronic toxicity of sediments spiked with zinc: An evaluation of the acid-volatile sulfide model using a life-cycle test with the midge chironomus tentans. Environmental Toxicology and Chemistry 15: 2102–2112.

    Google Scholar 

  • Sibley, P.K., D.A. Benoit & G.T. Ankley. 1997. The significance of growth in chironomus tentans sediment toxicity tests: Relationship to reproduction and demographic endpoints. Environmental Toxicology and Chemistry 16: 336–345.

    Google Scholar 

  • Sibley, P.K., M.J. Chappel, T.K. George, K.R. Solomon & K. Liber, 2000. Integrating effects of stressors across levels of biological organization: examples using organophosphorus insecticide mixtures in field-level exposures. Journal of Aquatic Ecosystem Stress and Recovery 7: 117–130.

    Google Scholar 

  • Smock, Leonard A., 1980. Relationships between body size and biomass of aquatic insects. Freshwater Biology 10: 375–383.

    Google Scholar 

  • Sobral, P. & J. Widdows, 1997. Effects of Copper Exposure on the Scope for Growth of the Clam Ruditapes Decussatus From Southern Portugal. Marine Pollution Bulletin 34: 992–1000.

    Google Scholar 

  • Strayer, D.L. & G.E. Likens, 1986. An energy budget for the zoobenthos of Mirror Lake, New Hampshire. Ecology 67: 303–313.

    Google Scholar 

  • Sullivan, J.F., G.J. Atchison, D.J. Kolar & A.W. McIntosh, 1978. Changes in predator-prey behavior of fathead minnows (Pimephales promelas) and largemouth bass (Micropterus salmoides) caused by cadmium. J. Fish. Res. Board Can. 35: 446–451.

    Google Scholar 

  • Tavares-Cromar, A.F. & D.D. Williams, 1996. The importance of temporal resolution in food web analysis: evidence from a detritus-based stream. Ecological Monographs 66: 91–113.

    Google Scholar 

  • Theodorakis, C.W., C.D. Swartz, W.J. Rogers, J.W. Bickham, K.C. Donnelly, S.M. Adams, 2000. Relationship between genotoxicity, mutagenicity, and fish community structure in a contaminated stream. Journal of Aquatic Ecosystem Stress and Recovery 7: 131–143.

    Google Scholar 

  • Thomann, R.V., 1989. Bioaccumulation model of organic chemical distribution in aquatic food chains. Environ. Sci. Technol. 23: 699.

    Google Scholar 

  • Ulanowicz, R.E., 1996. Trophic flow networks as indicators of ecosystem stress. In: G.A. Polis & K.O. Winemiller (eds), Food Webs: Integration of Patterns and Dynamics, Chapman and Hall, New York, pp. 358–368.

    Google Scholar 

  • Ulanowicz, R.E. & F. Wulff, 1991. Comparing ecosystem structures: The Chesapeake Bay and the Baltic Sea. In: J. Cole, G. Lovett & S. Findlay (eds), Comparative Analysis of Ecosystems: Patterns, Mechanisms, and Theories, Springer-Verlag, New York, pp. 140–166.

    Google Scholar 

  • Vander Zanden, M.J. & J.B. Rasmussen, 1996. A trophic position model of pelagic food webs: impact on contaminant bioaccumulation in lake trout. Ecological Monographs 66: 451–477.

    Google Scholar 

  • Wallace, J.B., T.F. Cuffney, C.C. Lay & D. Vogel, 1987. The influence of an ecosystem-level manipulation on prey consumption by a lotic dragonfly. Can. J. Zool. 65: 35–40.

    Google Scholar 

  • Ward, J.V. & B.C. Kondratieff, 1992. An Illustrated Guide to the Mountain Stream Insects of Colorado, University Press of Colorado, Niwot, CO.

    Google Scholar 

  • Webster, J.R. & J.L. Meyer, 1997. Organic matter budgets for streams: a synthesis. In: J.R. Webster & J.L. Meyer (eds), Stream Organic Matter Budgets, Journal of the North American Benthological Society 16: 3–161.

  • Weis, J.S., G. Smith & C. Santiago-Bass, 2000. Predator/prey interactions: a link between the individual level and both higher and lower level effects of toxicants in aquatic ecosystems. Journal of Aquatic Ecosystem Stress and Recovery 7: 145–153.

    Google Scholar 

  • Wilson, J.B., 1988. The cost of heavy-metal tolerance: An example. Evolution 42: 408–413.

    Google Scholar 

  • Winemiller, K.O. & G.A. Polis, 1996. Food webs: what can they tell us about the world. In: G.A. Polis & K.O. Winemiller (eds), Food Webs: Integration of Patterns and Dynamics, Chapman and Hall, New York, pp. 1–22.

    Google Scholar 

  • Woltering, D.M., J.L. Hedtke & L.J. Weber, 1978. Predator-prey interactions of fishes under the influence of ammonia. Transactions of the American Fisheries Society 107: 500–504.

    Google Scholar 

  • Yodzis, P., 1988. The indeterminacy of ecological interactions as perceived through perturbation experiments. Ecology 69: 508–515.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Carlisle, D.M. Bioenergetic food webs as a means of linking toxicological effects across scales of ecological organization. Journal of Aquatic Ecosystem Stress and Recovery 7, 155–165 (2000). https://doi.org/10.1023/A:1009975531047

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009975531047

  • bioenergetics
  • ecological hierarchy
  • food webs
  • scale
  • secondary production