Skip to main content
Log in

Response of marine microbial communities to anthropogenic stress

  • Published:
Journal of Aquatic Ecosystem Stress and Recovery

Abstract

Marine microbial communities adapt rapidly to changingenvironmental conditions, including anthropogenicstress. Adaptation involves a wide range ofstrategies, including, (a) formation of resistant,dormant stages, (b) initiation of repair mechanisms, (c)immobilization of toxic chemicals, (d) active transportof chemicals out of the cell, (e) use of contaminantchemicals as carbon or energy sources, and (f)transformation of contaminants to less toxic or morevolatile forms.

Adaptation responses are generally plasmid- orchromosomally-mediated and controlled throughinduction or derepression of a variety of biochemicalpathways. Characterization of microbial communityresponses at the molecular level provides biomarkersof contaminant exposure which in turn may be used toprovide an overall picture of ecosystem health. Thisreview will discuss the interactions betweenmicroorganisms and environmental contaminants and thepotential use of microbial biomarkers to assess thehealth of the microbial ecosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abad, F. X., R. M. Pinto, R. Gajardo & A. Bosch, 1997. Viruses in mussels: Public health implications and depuration. J. Food Protect 60(6): 677–681.

    Google Scholar 

  • Abramowicz, D. A., 1995. Aerobic and anaerobic PCB biodegradation in the environment. Environ. Health Perspect. 103(suppl 5): 97–99.

    Google Scholar 

  • Alldredge, A. L. & Y. Cohen, 1987. Can microscale chemical patches persist in the sea? Microelectrode study of marine snow, fecal pellets. Science 235: 689–691.

    Google Scholar 

  • Atlas, R. M., A. Horowitz, M. Krichevsky & A. K. Bej, 1991. Response of microbial populations to environmental disturbance. Micro. Ecol. 22: 249–256.

    Google Scholar 

  • Bamdad, M., S. Reader, C. A. Groliere, J. Bohatier & F. Denizeau, 1997. Uptake and efflux of polycyclic aromatic hydrocarbons by Tetrahymena pyriformis: Evidence for a resistance mechanism. Cytometry 28(2): 170–175.

    Google Scholar 

  • Barkay, T., C. Liebert & M. Gillman, 1989a. Hybridization of DNA probes with whole-community genome for detection of genes that encode microbial responses to pollutants: Mer genes and mercury resistance. Appl. Environ. Microbiol. 55(6): 1574–1577.

    Google Scholar 

  • Barkay, T., C. Liebert & M. Gillman, 1989b. Environmental significance of the potential for transposon mer(Tn21)-mediated reduction of ionic mercury to elemental mercury in natural waters. Appl. Environ. Microbiol. 55(5): 1196–1202.

    Google Scholar 

  • Barkay, T., R. R. Turner, A. Vandenbrook & C. Liebert, 1991. The relationships of mercury(II) volatilization from a freshwater pond to the abundance of mer genes in the gene pool of the indigenous microbial community. Micro. Ecol. 21(2): 151–162.

    Google Scholar 

  • Barkay, T., S. Nazaret & W. Jeffrey, 1995. Degradative genes in the environment. In: L. L. Young & C.E. Cerniglia (eds), Microbial Transformation and Degradation of Toxic Organic Chemicals, pp. 545–577. Wiley-Liss, New York.

    Google Scholar 

  • Bej, A. K., M. H. Mahbubani & R. M. Atlas, 1991a. Detection of viable Legionella pneumophila in water by polymerase chain-reaction and gene probe methods. Appl. Environ. Microbiol. 57(2): 597–600.

    Google Scholar 

  • Bej, A. K., S. C. McCarty & R. M. Atlas, 1991b. Detection of coliform bacteria and Escherichia coli by multiplex polymerase chain-reaction – comparison with defined substrate and plating methods for water-quality monitoring. Appl. Environ. Microbiol. 57(8): 2429–2432.

    Google Scholar 

  • Bej, A. K., M. H. Mahbubani, J. L. Dicesare & R. M. Atlas, 1991c. Polymerase chain reaction-gene probe detection of microorganisms by using filter-concentrated samples. Appl. Environ. Microbiol. 57(12): 3529–3534.

    Google Scholar 

  • Bej, A. K., J. L. Dicesare, L. Haff & R. M. Atlas, 1991d. Detection of Escherichia coli and Shigella spp. in water by using the polymerase chain-reaction and gene probes for UID. Appl. Environ. Microbiol. 57(4): 1013–1017.

    Google Scholar 

  • Bej, A. K., W. Y. Ng, S. Morgan, D. D. Jones & M. H. Mahbubani, 1996. Detection of viable Vibrio cholerae by reverse-transcriptase polymerase chain reaction (RT-CR). Mol. Biotechnol. 5(1): 1–10.

    Google Scholar 

  • Berardesco, G., S. Dyhrman, E. Gallagher & M. P. Shiaris, 1998. Spatial and temporal variation of phenanthrene-degrading bacteria in intertidal sediments. Appl. Environ. Microbiol. 64(7): 2560–2565.

    Google Scholar 

  • Berk, S. G., R. S. Ting, G.W. Turner & R. J. Ashburn, 1998. Production of respirable vesicles containing live Legionella pneumophila cells by two Acanthamoeba spp. Appl. Environ. Microbiol. 64: 279–286.

    Google Scholar 

  • Bogosian, G., P. J. L. Morris & J. P. O'Neil, 1998. A mixed culture recovery method indicates that enteric bacteria do not enter the viable but nonculturable state. Appl. Environ. Microbiol. 64: 1736–1742.

    Google Scholar 

  • Bothner, M. H., H. Takada, I. T. Knight, R. T. Hill, B. Butman, J. W. Farrington, R. R. Colwell & J. F. Grassle, 1994. Sewage contamination in sediments beneath a deep-ocean dump site off New York. Mar. Environ. Res. 38(1): 43–59.

    Google Scholar 

  • Brasher, C. W., A. DePaola, D. D. Jones & A. K. Bej, 1998. Detection of microbial pathogens in shellfish with multiplex PCR. Curr. Microbiol. 37(2): 101–107.

    Google Scholar 

  • Brock, T. D. & Madigan, 1994. Biology of Microorganisms, 7th edn. Prentice Hall, Englewood Cliffs, N.J.

    Google Scholar 

  • Bruce, K. D., 1997. Analysis of mer gene subclasses within bacterial communities in soils and sediments resolved by fluorescent-PCR-restriction fragment length polymorphism profiling. Appl. Environ. Microbiol. 63(12): 4914–4919.

    Google Scholar 

  • Bruce, K. D., W. D. Hiorns, J. L. Hobman, A.M. Osborn, P. Strike & D. A. Ritchie, 1992. Amplification of DNA from native populations of soil bacteria by using the polymerase chain reaction. Appl. Environ. Microbiol. 58(10): 3413–3416.

    Google Scholar 

  • Buswell, C. M., Y. M. Herlihy, L. M. Lawrence, J. T. M. McGuiggan, P. D. Marsh, C. W. Keevil & S. A. Leach, 1998. Extended survival and persistence of Campylobacter spp. in water and aquatic biofilms and their detection by immuno-fluorescent-antibody and-rRNA staining. Appl. Environ. Microbiol. 64: 733–741.

    Google Scholar 

  • Capone, D.G. & J. E. Bauer, 1992. Microbial processes in coastal pollution. In: R. Mitchell (ed.), Environmental Microbiology, pp. 191–237. Wiley, New York.

    Google Scholar 

  • Cervantes, C., G. Ji, J. L. Ramirez & S. Silver, 1994. Resistance to arsenic compounds in microorganisms. FEMS Microbiol. Rev. 15(4): 355–367.

    Google Scholar 

  • Chalmers, R. M., A. P. Sturdee, P. Mellors, V. Nicholson, F. Lawlor, F. Kenny & P. Timpson, 1997. Cryptosporidium parvum in environmental samples in the Sligo area, Republic of Ireland: A preliminary report. Lett. Appl. Microbiol. 25(5): 380–384.

    Google Scholar 

  • Chaudhry, G. R. & S. Chapalamadugu, 1991. Biodegradation of halogenated organic-compounds. Microbiol. Rev. 55(1): 59–79.

    Google Scholar 

  • Cherry, D. S., R. K. Guthrie & R. S. Harvey, 1974a. Temperature influence on bacterial populations in three aquatic systems. Wat. Res. Bull. 8: 149–155.

    Google Scholar 

  • Cherry, D. S., R. K. Guthrie & R. S. Harvey, 1974b. Bacterial populations of aquatic systems receiving different types of stress. Wat. Res. Bull. 10: 1009–1016.

    Google Scholar 

  • Choudhury, P. & R. Kumar, 1996. Association of metal tolerance with multiple antibiotic resistance of enteropathogenic organisms isolated from coastal region of deltaic Sunderbans. Ind. J. Med. Res. 104: 148–151.

    Google Scholar 

  • Cochran, P. K., C. A. Kellogg & J. H. Paul, 1998. Prophage induction of indigenous marine lysogenic bacteria by environmental pollutants. Mar. Ecol. Prog. Ser. 164(0): 125–133.

    Google Scholar 

  • Colwell, R. R. & W. Spira, 1992. The ecology of cholera. In: D. Barua & W. B. Greenough (eds), Cholera, pp. 107–127. Plenum, New York.

    Google Scholar 

  • Colwell, R. R., P. R. Brayton, D. J. Grimes, D. B. Roszak, S. A. Huq & L. M. Palmer, 1985. Viable but non-culturable Vibrio cholerae and related pathogens in the environment: Implications for release of genetically engineered microorganisms. Bio/Technol. 3: 817–820.

    Google Scholar 

  • Dahlberg, C. & M. Hermansson, 1995. Abundance of tn3, tn21, and tn501 transposase (tnpa) sequences in bacterial community DNA from marine environments. Appl. Environ. Microbiol. 61(8): 3051–3056.

    Google Scholar 

  • Dahlberg, C., C. Linberg, V. L. Torsvik & M. Hermansson, 1997. Conjugative plasmids isolated from bacteria in marine environments show various degrees of homology to each other and are not closely related to well-characterized plasmids. Appl. Environ. Microbiol. 63(12): 4692–4697.

    Google Scholar 

  • Das, A., J. M. Modak & K. A. Natarajan, 1998. Surface chemical studies of Thiobacillus ferrooxidans with reference to copper tolerance. Antonie Van Leeuwenhoek 73(3): 215–222.

    Google Scholar 

  • Davies, C. M., J. A. Long, M. Donald & N. J. Ashbolt, 1995. Survival of fecal microorganisms in marine and freshwater sediments. Appl. Environ. Microbiol. 61(5): 1888–1896.

    Google Scholar 

  • Dean-Ross, D. & A. L. Mills, 1989. Bacterial community structure and function along a heavy metal gradient. Appl. Environ. Microbiol. 55: 2002–2009.

    Google Scholar 

  • Diels, L. & M. Mergeay, 1990. DNA probe-mediated detection of resistant bacteria from soils highly polluted by heavy metals. Appl. Environ. Microbiol. 56(5): 1485–1491.

    Google Scholar 

  • Duwat, P., S. D. Ehrlich & A. Gruss, 1999. Effects of metabolic flux on stress response pathways in Lactococcus lactis. Mol. Microbiol. 31(3): 845–858.

    Google Scholar 

  • Erb, R. W. & I. Wagner-Dobler, 1993. Detection of polychlorinated biphenyl degradation genes in polluted sediments by direct DNA extraction and polymerase chain-reaction. Appl. Environ. Microbiol. 59(12): 4065–4073.

    Google Scholar 

  • Everaarts, J. M., H. M. Sleiderink, P. J. den Besten, R. S. Halbrook & L. R. Shugart, 1994. Molecular responses as indicators of marine pollution: DNA damage and enzyme induction in Limanda limanda and Asterias rubens. Environ. Health Perspect. 102(suppl 12): 37–43.

    Google Scholar 

  • Fayer, R., T. K. Graczyk, E. J. Lewis, J. M. Trout & C. A. Farley, 1998. Survival of infectious Cryptosporidium oocysts in seawater and Eastern Oysters (Crassostrea virginica) in the Chesapeake Bay. Appl. Environ. Microbiol. 64: 1070–1074.

    Google Scholar 

  • Fernandez, L. G., Y. O. Herrero & A. Novillo, 1998. Toxicity and bioaccumulation of lead in marine protozoa communities. Ecotoxicol. Environ. Safety. 39(3): 172–178.

    Google Scholar 

  • Ford, T. E. & R. Mitchell R., 1992. Microbial transport of toxic metals. In: R. Mitchell (ed.), Environmental Microbiology, pp. 83–101. Wiley, New York.

    Google Scholar 

  • Ford, T. E., J. Sorci & J. Shine, 1994. Microbial transport of toxic metals. In: C.R. Cothern (ed.), Trace Substances, Environment and Health, pp. 9–20. Science Reviews, Northwood, UK.

    Google Scholar 

  • Ford, T. E., 1993. The microbial ecology of water distribution and outfall systems. In: T. E. Ford (ed.), Aquatic Microbiology; an Ecological Approach, pp. 455–482. Blackwell, Boston.

    Google Scholar 

  • Ford, T. E., 1994. Pollutant effects on the microbial ecosystem. Environ. Health Perspect. 102(12): 45–48.

    Google Scholar 

  • Ford, T. E., J. S. Maki & R. Mitchell, 1995. Metal-microbe interactions. In: C. Gaylarde & H. Videla (eds), Bioextraction and Biodeterioration of Metals, pp. 1–23. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Ford, T. E. & D. Ryan, 1995. Toxic metals in aquatic ecosystems: a microbiological perspective. Environ. Health Perspect. 103(1): 25–28.

    Google Scholar 

  • Ford, T., J. Sorci, R. Ika & J. P. Shine, 1998. Interactions between metals and microbial communities in New Bedford Harbor, Massachusetts. Environ. Health Perspect. 106: 1033–1039.

    Google Scholar 

  • Fortin, N., R. R. Fulthorpe, D. G. Allen & C. W. Greer, 1998. Molecular analysis of bacterial isolates and total community DNA from kraft pulp mill effluent treatment systems. Can. J. Microbiol. 44(6): 537–546.

    Google Scholar 

  • Francisco, R. L., R. A. Mah & A. C. Rabin, 1973. Acridene orange-epifluorescence technique for counting bacteria in natural waters. Trans. Am. Microsc. Soc. 92: 416–421.

    Google Scholar 

  • Fulthorpe, R. R. & R. C. Wyndham, 1989. Survival and activity of a 3-chlorobenzoate-catabolic genotype in a natural system. Appl. Environ. Microbiol. 55(6): 1584–1590.

    Google Scholar 

  • Fulthorpe, R. R. & R. C. Wyndham, 1992. Involvement of a chlorobenzoate-catabolic transposon, Tn5271, in community adaptation to chlorobiphenyl, chloroaniline, and 2,4-dichlorophenoxyacetic acid in a freshwater ecosystem. Appl. Environ. Microbiol. 58(1): 314–325.

    Google Scholar 

  • Fulthorpe, R. R., C. McGowan, O. V. Maltseva, W. E. Holben & J. M. Tiedje, 1995. 2,4-Dichlorophenoxyacetic acid-degrading bacteria contain mosaics of catabolic genes. Appl. Environ. Microbiol. 61(9): 3274–3281.

    Google Scholar 

  • Furukawa, K. & N. Kimura, 1995. Biochemistry and genetics of PCB metabolism. Environ. Health Perspect. 103(suppl 5): 21–23.

    Google Scholar 

  • Garcia-Valdes, E., E. Cozar, R. Rotger, J. Lalucat & J. Ursing, 1988. New naphthalene-degrading marine Pseudomonas strains. Appl. Environ. Microbiol. 54(10): 2478–2485.

    Google Scholar 

  • Gauthier, M. J., B. Lafay, R. Christen, L. Fernandez, M. Acquaviva, P. Bonin & J. C. Bertrand, 1992. Marinobacter hydrocarbonoclasticus gen. nov., sp. nov., a new, extremely halotolerant, hydrocarbon-degrading marine bacterium. Int. J. Syst. Bacteriol. 42(4): 568–576.

    Google Scholar 

  • Geiselbrecht, A. D., R. P. Herwig, J.W. Deming & J. T. Staley, 1996. Enumeration and phylogenetic analysis of polycyclic aromatic hydrocarbon-degrading marine bacteria from Puget sound sediments. Appl. Environ. Microbiol. 62(9): 3344–3349.

    Google Scholar 

  • Geiselbrecht, A. D., B. P. Hedlund, M. A. Tichi & J. T. Staley, 1998. Isolation of marine polycyclic aromatic hydrocarbon (PAH)-degrading Cycloclasticus strains from the Gulf of Mexico and comparison of their PAH degradation ability with that of Puget Sound Cycloclasticus strains. Appl. Environ. Microbiol. 64: 4703–4710.

    Google Scholar 

  • Gonzalez, J. M., F. Mayer, M. A. Moran, R. E. Hodson & W. B. Whitman, 1997. Microbulbifer hydrolyticus gen. nov., sp. nov., and Marinobacterium georgiense gen. nov., sp. nov., two marine bacteria from a lignin-rich pulp mill waste enrichment. Int. J. Syst. Bacteriol. 47(2): 369–376.

    Google Scholar 

  • Gordon, A. S., V. J. Harwood & S. Sayyar, 1993. Growth, copper-tolerant cells, and extracellular protein production in copper-stressed chemostat cultures of Vibrio alginolyticus. Appl. Environ. Microbiol. 59(1): 60–66.

    Google Scholar 

  • Gordon, A. S., L. D. Howell & V. Harwood, 1994. Responses of diverse heterotrophic bacteria to elevated copper concentrations. Can. J. Microbiol. 40(5): 408–411.

    Google Scholar 

  • Guthrie, R. K., D. S. Cherry & R. N. Ferebee, 1974. A comparison of thermal loading effects on bacterial populations in polluted and non-polluted aquatic systems. Wat. Res. 8: 143–148.

    Google Scholar 

  • Guthrie, R. K., D. S. Cherry & F. L. Singleton, 1975. Effects of nitrate and phosphate concentration on natural aquatic bacterial populations. Wat. Res. Bull. 11(6): 1131–1136.

    Google Scholar 

  • Guthrie, R. K., D. S. Cherry & F. L. Singleton, 1978. Responses of heterotrophic bacterial populations to pH changes in coal ash effluent. Wat. Res. Bull. 14: 803–808.

    Google Scholar 

  • Guthrie, R. K., F. L. Singleton & D. S. Cherry, 1977. Aquatic bacterial populations and heavy metals-II. Influence of chemical content of aquatic environments on bacterial uptake of chemical elements. Wat. Res. 11: 643–646.

    Google Scholar 

  • Hamann, C., J. Hegemann & A. Hildebrandt, 1999. Detection of polycyclic aromatic hydrocarbon degradation genes in different soil bacteria by polymerase chain reaction and DNA hybridization. FEMS Micro. Lett. 173: 255–263.

    Google Scholar 

  • Harb, O. S., C. Venkataraman, B. J. Haack, L.-Y. Gao & Y. Abu Kwaik, 1998. Heterogeneity in the attachment and uptake mechanisms of the Legionnaires' disease bacterium, Legionella pneumophila, by protozoan hosts. Appl. Environ. Microbiol. 64: 126–132.

    Google Scholar 

  • Harwood, V. J. & A. S. Gordon, 1994. Regulation of extracellular copper-binding proteins in copper-resistant and copper-sensitive mutants of Vibrio alginolyticus. Appl. Environ. Microbiol. 60(6): 1749–1753.

    Google Scholar 

  • Hedlund, B. P., A. D. Geiselbrecht, T. J. Bair & J. T. Staley, 1999. Polycyclic aromatic hydrocarbon degradation by a new marine bacterium, Neptunomonas naphthovorans gen. nov., sp. nov. Appl. Environ. Microbiol. 65(1): 251–259.

    Google Scholar 

  • Herrick, J. B., E. L. Madsen, C. A. Batt & W. C. Ghiorse, 1993. Polymerase chain reaction amplification of naphthalenecatabolic and 16S rRNA gene sequences from indigenous sediment bacteria. Appl. Environ. Microbiol. 59(3): 687–694.

    Google Scholar 

  • Herrick, J. B., K. K. G. Stuart, W. C. Ghiorse & E. L. Madsen, 1997. Natural horizontal transfer of a naphthalane dioxygenase gene between bacteria native to a coal tar-contaminated field site. Appl. Environ. Microbiol. 63(61): 2330–2337.

    Google Scholar 

  • Hobbie, J. E., R. J. Daley & S. Jasper, 1977. Use of nuclepore filters for counting bacteria by fluorescence microscopy. Appl. Environ. Microbiol. 33: 1225–1228.

    Google Scholar 

  • Holben, W. E., B. M. Schroeter, V. G. M. Calabrese, R. H. Olsen, J. K. Kukor, V. O. Biederbeck, A. E. Smith & J. M. Tiedje, 1992. Gene probe analysis of soil microbial populations selected by amendment with 2,4-dichlorophenoxyacetic acid. Appl. Environ. Microbiol. 58(12): 3941–3948.

    Google Scholar 

  • Hood, M. A., J. B. Guckert, D. C. White & F. Deck, 1986. The effect of nutrient deprivation on lipid carbohydrates, DNA, RNA, and protein of Vibrio cholerae. Appl. Environ. Microbiol. 52(4): 788–793.

    Google Scholar 

  • Huang, C. T., F. P. Yu, G. A. McFeters & P. S. Stewart, 1995. Nonuniform spatial patterns of respiratory activity within biofilms during disinfection. Appl. Environ. Microbiol. 61: 2252–2256.

    Google Scholar 

  • Hussong, D., R. R. Colwell, M. O'Brien, E. Weiss, A. D. Pearson, R. M. Weiner & W. D. Burge, 1987. Viable Legionella pneumophila not detectable by culture on agar media. Bio/Technol. 5: 947–950.

    Google Scholar 

  • Isken, S. & J. A. de Bont, 1998. Bacteria tolerant to organic solvents. Extremophiles 2(3): 229–238.

    Google Scholar 

  • Jeffrey, W. H., S. Nazaret & T. Barkay, 1996. Detection of the merA gene and its expression in the environment. Microb. Ecol. 32(3): 293–303.

    Google Scholar 

  • Johnson, D. C., C. E. Enriquez, I. L. Pepper, T. L. Davis, C. P. Gerba & J. B. Rose, 1997. Survival of Giardia, Cryptosporidium, poliovirus and Salmonella in marine waters. Wat. Sci. Technol. 35(11–12): 261–268.

    Google Scholar 

  • Jones, D. D., R. Law & A. K. Bej, 1993. Detection of Salmonella spp. in oysters using polymerase chain-reactions (pcr) and gene probes. J. Food Sci. 58(6): 1191–1197.

    Google Scholar 

  • Ka, J. O., W. E. Holben & J.M. Tiedje, 1994a. Use of gene probes to aid in recovery and identification of functionally dominant 2,4-dichlorophenoxyacetic acid-degrading populations in soil. Appl. Environ. Microbiol. 60(4): 1116–1120.

    Google Scholar 

  • Ka, J. O., W. E. Holben & J. M. Tiedje, 1994b. Genetic and phenotypic diversity of 2,4-dichlorophenoxyacetic acid (2,4-D)-degrading bacteria isolated from 2,4-D-treated field soils. Appl. Environ. Microbiol. 60(4): 1106–1115.

    Google Scholar 

  • Ka, J. O., P. Burauel, J. A. Bronson, W. E. Holben & J. M. Tiedje, 1995. DNA probe analysis of microbial community selected in field by long-term 2,4-D application. Soil Sci. Soc. Amer. J. 59(6): 1581–1587.

    Google Scholar 

  • Kamagata, Y., R. R. Fulthorpe, K. Tamura, H. Takami, L. J. Forney & J.M. Tiedje, 1997. Pristine environments harbor a new group of oligotrophic 2,4-dichlorophenoxyacetic acid-degrading bacteria. Appl. Environ. Microbiol. 63(61): 2266–2272.

    Google Scholar 

  • Kirchman, D. L., 1993. Particulate detritus and bacteria in marine environments. In: T. E. Ford (ed.), Aquatic Microbiology – an Ecological Approach, pp. 321–342. Blackwell, Boston.

    Google Scholar 

  • Kjelleberg, S., K. B. G. Flärdh, T. Nyström & D. J. W. Moriarty, 1993. Growth limitation and starvation of bacteria. In: T. E. Ford (ed.), Aquatic Microbiology – an Ecological Approach, pp. 289–320. Blackwell, Boston.

    Google Scholar 

  • King, C. H., E. B. Shotts, R. E. Wooley & K. G. Porter, 1988. Survival of coliforms and bacterial pathogens within protozoa during chlorination. Appl. Environ. Microbiol. 54: 3023–3033.

    Google Scholar 

  • Korber, D. R., A. Choi, G. M. Wolfaardt, S. C. Ingham & D. E. Caldwell, 1997. Substratum topography influences susceptibility of Salmonella enteritidis biofilms to trisodium phosphate. Appl. Environ. Microbiol. 63: 3352–3358.

    Google Scholar 

  • Krovacek, K., V. Pasquale, S. B. Baloda, V. Soprano, M. Conte & S. Dumontet, 1994. Comparison of putative virulence factors in Aeromonas hydrophila strains isolated from the marine environment and human diarrheal cases in southern Italy. Appl. Environ. Microbiol. 60(4): 1379–1382.

    Google Scholar 

  • Larrick, S. R., J. R. Clark, D. S. Cherry & J. Cairns, 1981. Structural and functional changes of aquatic heterotrophic bacteria to thermal, heavy, and fly ash effluents. Wat. Res. 15: 875–880.

    Google Scholar 

  • Layton, A. C., M. Muccini, M. M. Ghosh & G. S. Sayler, 1998. Construction of a bioluminescent reporter strain to detect polychlorinated biphenyls. Appl. Environ. Microbiol. 64:(12): 5023–5026.

    Google Scholar 

  • Leahy, J. G. & R. R. Colwell, 1990. Microbial degradation of hydrocarbons in the environment. Microbiol. Rev. 54(3): 305–315.

    Google Scholar 

  • Lin, C. & B. H. Olson, 1995. Occurrence of cop-like copper resistance genes among bacteria isolated from a water distribution system. Can. J. Microbiol. 41(7): 642–646.

    Google Scholar 

  • Lovett, C. M., T. M. Ogara & J. N. Woodruff, 1994. Analysis of the SOS inducing signal in Bacillus subtilis using Escherichia coli LexA as a probe. J. Bacteriol. 176(16): 4914–4923.

    Google Scholar 

  • MacGillivray, A. R. & M. P. Shiaris, 1993. Biotransformation of polycyclic aromatic hydrocarbons by yeasts isolated from coastal sediments. Appl. Environ. Microbiol. 59(5): 1613–1618.

    Google Scholar 

  • Mahler, I., H. S. Levinson, Y. Wang & H. O. Halvorson, 1986. Cadmium-and mercury-resistant Bacillus strains from a salt marsh and from Boston Harbor. Appl. Environ. Microbiol. 52(6): 1293–1298.

    Google Scholar 

  • Maki, J. S., 1993. The air–water interface as an extreme environment. In: T. E. Ford (ed.), Aquatic Microbiology – an Ecological Approach, pp. 409–440. Blackwell, Boston.

    Google Scholar 

  • Maltseva, O., C. McGowan, R. Fulthorpe & P. Oriel, 1996. Degradation of 2,4-dichlorophenoxyacetic acid by haloalkaliphilic bacteria. Microbiol. Read. 142(5): 1115–1122.

    Google Scholar 

  • Martinez-Manzanares, E., M. A. Morinigo, R. Cornax, F. Egea & J. J. Borrego, 1991a. Relationship between classical indicators and several pathogenic microorganisms involved in shellfish-borne diseases. J. Food Protect. 54(9): 711–717.

    Google Scholar 

  • Martinez-Manzanares, E., F. Egea, D. Castro, M. A. Morinigo, P. Romero & J. J. Borrego, 1991b. Accumulation and depuration of pathogenic and indicator microorganisms by the bivalve mollusc, Chamelea gallina, under controlled laboratory conditions. J. Food Protect 54(8): 612–618.

    Google Scholar 

  • Martinez-Manzanares, E., M. A. Morinigo, D. Castro, M. C. Balebona, J. M. Sanchez & J. J. Borrego, 1992. Influence of the faecal pollution of marine sediments on the microbial content of shellfish. Mar. Poll. Bull. 24(7): 342–349.

    Google Scholar 

  • Matheson, V. G., L. J. Forney, Y. Suwa, C. H. Nakatsu, A. J. Sexstone & W. E. Holben, 1996. Evidence for acquisition in nature of a chromosomal 2,4-dichlorophenoxyacetic acid/alpha-ketoglutarate dioxygenase gene by different Burkholderia spp. Appl. Environ. Microbiol. 62(7): 2457–2463.

    Google Scholar 

  • More, M. L., J. B. Herrick, M. C. Silva, W. C. Ghiorse & E. L. Madsen, 1994. Quantitative cell lysis of indigenous micro-organisms and rapid extraction of microbial DNA from sediment. Appl. Environ. Microbiol. 60(5): 1572–1580.

    Google Scholar 

  • Morita, R. Y, 1986. Starvation-survival: The normal mode of most bacteria in the ocean. Proc. 4th Int. Symp. on Microbial Ecology, pp. 242–248. Slovene Society for Microbiology, Yugoslavia.

    Google Scholar 

  • Movahedzadeh, F., M. J. Colston & E. O. Davis, 1997. Determination of DNA sequences required for regulated Mycobacterium tuberculosis RecA expression in response to DNA-amaging agents suggests that two modes of regulation exist. J. Bacteriol. 179(11): 3509–3518.

    Google Scholar 

  • Mukherjee, T. K., A. Raghavan & D. Chatterji, 1998. Shortage of nutrients in bacteria: The stringent response. Curr. Sci. 75(7): 684–689.

    Google Scholar 

  • Nazaret, S., W. H. Jeffrey, E. Saouter, R. von Haven & T. Barkay, 1994. MerA gene expression in aquatic environments measured by mRNA production and Hg(II) volatilization. Appl. Environ. Microbiol. 60(11): 4059–4065.

    Google Scholar 

  • Newsome, A. L., T. M. Scott, R. F. Benson & B. S. Fields, 1998. Isolation of an amoeba naturally harboring a distinctive Legionella species. Appl. Environ. Microbiol. 64: 1688–1693.

    Google Scholar 

  • Nies, D. H. & S. Silver, 1995. Ion efflux systems involved in bacterial metal resistances. J. Ind. Microbiol. 14(2): 186–199.

    Google Scholar 

  • Noble, R. T. & J. A. Fuhrman, 1997. Virus decay and its causes in coastal waters. Appl. Environ. Microbiol. 63(1): 77–83.

    Google Scholar 

  • Nystrom, T., R. M. Olsson & S. Kjelleberg, 1992. Survival, stress resistance, and alterations in protein expression in the marine vibrio sp. strain S14 during starvation for different individual nutrients. Appl. Environ. Microbiol. 58(1): 55–65.

    Google Scholar 

  • Osborn, A. M., K. D. Bruce, P. Strike & D. A. Ritchie, 1993. Polymerase chain reaction-restriction fragment length polymorphism analysis shows divergence among mer determinants from gram-negative soil bacteria indistinguishable by DNA-DNA hybridization. Appl. Environ. Microbiol. 59(12): 4024–4030.

    Google Scholar 

  • Osborn, A. M., K. D. Bruce, P. Strike & D. A. Ritchie, 1995. Sequence conservation between regulatory mercury resistance genes in bacteria from mercury polluted and pristine environments. Syst. Appl. Microbiol. 18(1): 1–6.

    Google Scholar 

  • Ostling, J., K. Flardh & S. Kjelleberg, 1995. Isolation of a carbon stavation regulatory mutant in a marine Vibrio strain. J. Bacteriol. 177(23): 6978–6982.

    Google Scholar 

  • Pearson, A. J., K. D. Bruce, A.M. Osborn, D. A. Ritchie & P. Strike, 1996. Distribution of class II transposase and resolvase genes in soil bacteria and their association with mer genes. Appl. Environ. Microbiol. 62(8): 2961–2965.

    Google Scholar 

  • Pellizari, V. H., S. Bezborodnikov, J. F. Ii. Quenseni & J. M. Tiedje, 1996. Evaluation of strains isolated by growth on naphthalene and biphenyl for hybridization of genes to dioxygenase probes and polychlorinated biphenyl-degrading ability. Appl. Environ. Microbiol. 62(6): 2053–2058.

    Google Scholar 

  • Plumley, F. G., 1997. Marine algal toxins: biochemistry, genetics, and molecular biology. Limnol. Oceanogr. 42: 1252–1264.

    Google Scholar 

  • Power, M., J. R. van der Meer, R. Tchelet, T. Egli & R. Eggen, 1998. Molecular-based methods can contribute to assessments of toxicological risks and bioremediation strategies. J. Microbiol. Meth. 32(2): 107–119.

    Google Scholar 

  • Rollins, D. M. & R. R. Colwell, 1986. Viable but non-culturable stage of Campylobacter jejuni and its role in survival in the natural aquatic environment. Appl. Environ. Microbiol. 52: 531–538.

    Google Scholar 

  • Roszak, D. B., D. J. Grimes & R. R. Colwell, 1984. Viable but nonrecoverable stage of Salmonella enteritidis in aquatic systems. Can. J. Microbiol. 30: 334–338.

    Google Scholar 

  • Rowbury, R. J., 1997. Regulatory components, including integration host factor, CysB and H-NS, that influence pH responses in Escherichia coli. Lett. Appl. Microbiol. 24(5): 319–328.

    Google Scholar 

  • Rowbury, R. J., 1998. Life sciences up-date. Do we need to rethink our ideas on the mechanisms of inducible processes in bacteria? Sci. Prog. 81(3): 193–204.

    Google Scholar 

  • Rowbury, R. J., T. J. Humphrey & M. Goodson, 1999. Properties of an L-glutamate-induced acid tolerance response which involves the functioning of extracellular induction components. J. Appl. Microbiol. 86(2): 325–330.

    Google Scholar 

  • Saboo, V. M. & M. A. Gealt, 1998. Gene sequences of the pcpB gene of pentachlorophenol-degrading Sphingomonas chlorophenolica found in nondegrading bacteria. Can. J. Microbiol. 44(7): 667–675.

    Google Scholar 

  • Sandaa, R. A. & O. Enger, 1994. Transfer in marine sediments of the naturally occurring plasmid pRAS1 encoding multiple antibiotic resistance. Appl. Environ. Microbiol. 60(12): 4234–4238.

    Google Scholar 

  • Sawyer, T. K., T. A. Nerad, E. J. Lewis & S. M. McLaughlin, 1993. Acanthamoeba stevensoni n. sp. (Protozoa: Amoebida) from sewage-contaminated shellfish beds in Raritan Bay, New York. J. Euk. Microbiol. 40(6): 742–746.

    Google Scholar 

  • Shiaris M. P., A. C. Rex, G.W. Pettibone, K. Keay, P. McManus, M. A. Rex, J. Ebersole & E. Gallagher, 1987. Distribution of indicator bacteria and Vibrio parahaemolyticus in sewage-polluted intertidal sediments. Appl. Environ. Microbiol. 53: 1756–1761.

    Google Scholar 

  • Silver, S, 1998. Genes for all metals – a bacterial view of the periodic table. The 1996 Thom Award Lecture. J. Ind. Microbiol. Biotechnol. 20(1): 1–12.

    Google Scholar 

  • Silver, S. & L. T. Phung, 1996. Bacterial heavy metal resistance: New surprises. Ann. Rev. Microbiol. 50: 753–789.

    Google Scholar 

  • Silver, S. & M. Walderhaug, 1992. Gene regulation of plasmidand chromosome-determined inorganic ion transport in bacteria. Micro. Rev. 56(1): 195–228.

    Google Scholar 

  • Sochard, M. R., D. F. Wilson, B. Austin & R. R. Colwell, 1979. Bacteria associated with the surface and gut of marine copepods. Appl. Environ. Microbiol. 37(4): 750–759.

    Google Scholar 

  • Sorci, J. J., 1998. Microbial Diversity and Metal-Resistance Gene Expression in Polluted Sediments from New Bedford Harbor. Massachusetts. D.Sc. thesis, Harvard University.

  • Sorci, J., J. D. Paulauskis & T. Ford, 1999. 16S rRNA restriction fragment length polymorphism analysis of bacterial diversity as a biomarker of ecological health in polluted sediments from New Bedford Harbor, Massachusetts, USA. Mar. Poll. Bull. 38(8): 663–675.

    Google Scholar 

  • Srinivasan, S. & S. Kjelleberg, 1998. Cycles of famine and feast: the starvation and outgrowth strategies of a marine vibrio. J. Biosciences 23(4): 501–511.

    Google Scholar 

  • Srinivasan, S., J. Ostling, T. Charlton, R. De Nys. K. Takayama & S. Kjelleberg, 1998. Extracellular signal molecule(s) involved in the carbon starvation response of marine Vibrio sp. strain S14. J. Bacteriol. 180(2): 201–209.

    Google Scholar 

  • Stegeman, J. J. & J. J. Lech, 1991. Cytochrome P450 monooxygenase systems in aquatic species: Carcinogen metabolism and biomarkers for carcinogen and pollutant exposure. Environ. Health Perspect. 90: 101–109.

    Google Scholar 

  • Steinert, M., L. Emody, R. Amann & J. Hacker, 1997. Resuscitation of viable but nonculturable Legionella pneumophila Philadelphia JR32 by Acanthamoeba castellanii. Appl. Environ. Microbiol. 63: 2047–2053.

    Google Scholar 

  • Stuart-Keil, K. G., A. M. Hohnstock, K. P. Drees, J. B. Herrick & E. L. Madsen, 1998. Plasmids responsible for horizontal transfer of naphthalene catabolism genes between bacteria at a coal tarcontaminated site are homologous to pDTG1 from Pseudomonas putida NCIB 9816-4. Appl. Environ. Microbiol. 64(10): 3633–3640.

    Google Scholar 

  • Tonso, N. L., V. G. Matheson & W. E. Holben, 1995. Polyphasic Characterization of a Suite of Bacterial Isolates Capable of Degrading 2,4-D. Micro. Ecol. 30(1): 3–24.

    Google Scholar 

  • Top, E. M., W. E. Holben & L. J. Forney, 1995. Characterization of diverse 2,4-dichlorophenoxyacetic acid-degradative plasmids isolated from soil by complementation. Appl. Environ. Microbiol. 61(5): 1691–1698.

    Google Scholar 

  • Torsvik, V., F. L. Daae, R. A. Sandaa & L. Ovreas, 1998. Novel techniques for analyzing microbial diversity in natural and perturbed environments. J. Biotechnol. 64(1): 53–62.

    Google Scholar 

  • Vallaeys, T., R. R. Fulthorpe, A. M. Wright & G. Soulas, 1996. The metabolic pathway of 2,4-dichlorophenoxyacetic acid degradation involves different families of tfdA and tfdB genes according to PCR-RFLP analysis. FEMS Microbiol. Ecol. 20(3): 163–172.

    Google Scholar 

  • van der Meer, J. R., C. Werlen, S. F. Nishino & J. C. Spain, 1998. Evolution of a pathway for chlorobenzene metabolism leads to natural attenuation in contaminated groundwater. Appl. Environ. Microbiol. 64(11): 4185–4193.

    Google Scholar 

  • Viarengo, A., R. Accomando, I. Ferrando, F. Beltrame, M. Fato & G. Marcenaro, 1996. Heavy metal effects on cytosolic free Ca-2+ level in the marine protozoan Euplotes crassus evaluated by confocal laser scanning microscopy. Comp. Biochem. Physiol. Pharmacol. Toxicol. Endocrinol. 113(2): 161–168.

    Google Scholar 

  • Walia, S., A. Khan & N. Rosenthal, 1990. Construction and applications of DNA probes for detection of polychlorinated biphenyl-degrading genotypes in toxic organic-ontaminated soil environments. Appl. Environ. Microbiol. 56(1): 254–259.

    Google Scholar 

  • Warner-Bartnicki, A. L. & R. V. Miller, 1992. Characterization of the stress-responsive behavior in Pseudomonas aeruginosa PAO: isolation of the Tn3-lacZYA fusions with novel damage-inducible (din) promoters. J. Bacteriol. 174(6): 1862–1868.

    Google Scholar 

  • Weichart, D. & S. Kjelleberg, 1996. Stress resistance and recovery potential of culturable and viable but nonculturable cells of Vibrio vulnificus. Microbiol. 142(4): 845–853.

    Google Scholar 

  • Wilson, M. S., C. Bakermans & E. L. Madsen, 1999. In situ, real-time catabolic gene expression: Extraction and characterization of naphthalene dioxygenase mRNA transcripts from groundwater. Appl. Environ. Microbiol. 65(1): 80–87.

    Google Scholar 

  • Yakimov, M. M., P. N. Golyshin, S. Lang, E. R. Moore, W. R. Abraham, H. Lunsdorf & K. N. Timmis, 1998. Alcanivorax borkumensis gen. nov., sp. nov., a new, hydrocarbon-degrading and surfactant-producing marine bacterium. Int. J. Syst. Bacteriol. 48(2): 339–348.

    Google Scholar 

  • Young, L. L., D. Abramowicz, M. Alexander, R. Arnold, S. Aust, J. Hunt, J. Shann, W. Suk & J. Tiedje, 1995. Biodegradation: Its role in reducing toxicity and exposure to environmental contaminants. Environ. Health Perspect. 103(5): 129 pp.

  • Ysern, P., B. Clerch, M. Castano, I. Gilbert, J. Barbe & M. Lagostera, 1990. Induction of SOS genes in Escherichia coli and mutagenesis in Salmonella typhimurium by fluoroquinolones. Mutagenesis 5(1): 63-66.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ford, T.E. Response of marine microbial communities to anthropogenic stress. Journal of Aquatic Ecosystem Stress and Recovery 7, 75–89 (2000). https://doi.org/10.1023/A:1009971414055

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009971414055

Navigation