Surrogates in marine benthic investigations ‐ which taxonomic unit to target?

  • Frode Olsgard
  • Paul J. Somerfield
Article

Abstract

Although the identification of organisms to the levelof species is the ideal in studies of marinemacrobenthos, there are situations where such a finelevel of taxonomic discrimination may be eitherimpossible or unwarranted, for example when much thefauna is undescribed, or if the task for which samplesare collected does not require them to be identifiedto the species level. The idea that abundances ofhigher taxa, or particular groups of organisms, may beused as surrogates for the total fauna in such studiesis explored in this paper using data from theNorwegian sector of the North Sea. The generalconclusion is that, in surveys of soft sedimentmacrofauna in disturbed areas of the North Sea wherepollution imposes simple spatial gradients on thebenthic communities, little information aboutinter-sample relationships is lost using data based onfamily, polychaete species, or polychaete familyabundances, rather than species abundances. In morepristine areas where spatial patterns are determinedby a number of processes, correlations betweencalculated diversity indices and similarity in faunalpatterns between species and family abundances arestill very high, but less so for polychaete species orpolychaete family abundances. This suggests thatidentification to the level of family may besatisfactory in many routine monitoring surveys,andidentification of only the polychaetes, either to thelevel of species or family, may also be a possiblealternative if there are clear disturbance gradientsin the survey area. Polychaetes are of importance indisturbed areas because the group contains tolerantand intolerant species, and in undisturbed areasbecause within the taxon species have a greater rangeof trophic and reproductive strategies than withinother taxa. Ultimately it is the distribution ofspecies, their identities, and their interactions witheach other and with the environment, that are ofinterest. The use of surrogates is likely to be mostadvantageous if it is only the extent of pollutioneffects from a discrete source that matters, andspecies level baseline studies have already beencompleted.

biodiversity pollution monitoring rapid assessment surrogates taxonomic resolution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Belbin, L., 1993. Environmental representativeness – regional partitioning and reserve selection. Biol. Conserv. 66: 223–230.Google Scholar
  2. Bray, J. R. & J. T. Curtis, 1957. An ordination of the upland forest communities of southern Wisconsin. Ecol. Monogr. 27: 325–349.Google Scholar
  3. Clarke, K. R. & M. Ainsworth, 1993. A method for linking multivariate community structure to environmental variables. Mar. Ecol. Prog. Ser. 92: 205–209.Google Scholar
  4. Clarke, K. R. & R. H. Green, 1988. Statistical design and analysis for a 'biological effects' study. Mar. Ecol. Prog. Ser. 46: 213–226.Google Scholar
  5. Clarke, K. R. & R. M. Warwick, 1994. Change in Marine Communities: An Approach to Statistical Analysis and Interpretation. Plymouth Marine Laboratory, Plymouth. 141 pp.Google Scholar
  6. Clarke, K. R. & R. M. Warwick, 1998. Quantifying structural redundancy in ecological communities. Oecologia 113: 278–289.Google Scholar
  7. Ferraro, S. P. & F. A. Cole, 1995. Taxonomic level sufficient for assessing pollution impacts on the Southern California Bight macrobenthos – revisited. Environ. Toxicol. Chem. 14: 1031–1040.Google Scholar
  8. Gaston, K. J. & P. H. Williams, 1993. Mapping the world's species – the highest taxon approach. Biodiv. Letters 1: 2–8.Google Scholar
  9. Gray, J. S., M. M. Aschan, M. R. Carr, K. R. Clarke, R. H. Green, T. H. Pearson, R. Rosenberg & R. M. Warwick, 1988. Analysis of community attributes of the benthic macrofauna of Frierfjord/Langesundfjord and in a mesocosm experiment. Mar. Ecol. Prog. Ser. 46: 151–165.Google Scholar
  10. Gray, J. S., 1997. Marine biodiversity: Patterns, threats and conservation needs. Biodiv. Conserv. 6: 153–175.Google Scholar
  11. Howson, C. M., 1987. Species Directory to British Marine Fauna and Flora. Marine Conservation Society, Ross-on-Wye, Hereforshire. 471 pp.Google Scholar
  12. Hughes, T. P., A. H. Baird, E. A. Dinsdale, N. A. Moltschaniwskyj, M. S. Pratchett, J. E. Tanner & B. L. Willis, 1999. Patterns of recruitment and abundance of corals along the Great Barrier Reef. Nature 397: 59–63.Google Scholar
  13. Kruskal, J. B. & M. Wish, 1978. Multidimensional Scaling. Sage Publishers, Beverly Hills, California. 93 pp.Google Scholar
  14. Legendre, P., 1993. Spatial autocorrelation: Trouble or new paradigm? Ecology 74: 1659–1673.Google Scholar
  15. Legendre, P. & M. J. Fortin, 1989. Spatial pattern and ecological analysis. Vegetatio 80: 107–138.Google Scholar
  16. Noss, R. F., 1990. Indicators for monitoring biodiversity: a hierarchical approach. Conserv. Biol. 4: 355–364.Google Scholar
  17. Olsgard, F. & J. S. Gray, 1995. A comprehensive analysis of the effects of offshore oil and gas exploration and production on the benthic communities of the Norwegian continental shelf. Mar. Ecol. Prog. Ser. 122: 277–306.Google Scholar
  18. Olsgard, F., P. J. Somerfield & M. R. Carr, 1997. Relationships between taxonomic resolution and data transformations in analyses of a macrobenthic community along an established pollution gradient. Mar. Ecol. Prog. Ser. 149: 173–181.Google Scholar
  19. Olsgard, F., P. J. Somerfield & M. R. Carr, 1998. Relationships between taxonomic resolution, macrobenthic community patterns and disturbance. Mar. Ecol. Prog. Ser. 172: 25–36.Google Scholar
  20. Pearson, T. H. & R. Rosenberg, 1978. Macrobenthic succession in relation to organic enrichment and pollution of the marine environment. Oceanogr. Mar. Biol. Ann. Rev. 16: 22–311.Google Scholar
  21. Rosenberg, R., 1972. Benthic faunal recovery in a Swedish fjord following the closure of a sulphite pulp mill. Oikos 23: 92–108.Google Scholar
  22. Shannon, C. E. & W. W. Weaver, 1963. The Mathematical Theory of Communication. University Illinois Press, Urbana. 117 pp.Google Scholar
  23. Snelgrove, P. V. R., 1997. The importance of marine sediment biodiversity in ecosystem processes. Ambio 26: 578–583.Google Scholar
  24. Somerfield, P. J. & K. R. Clarke, 1995. Taxonomic levels, in marine community studies, revisited. Mar. Ecol. Prog. Ser. 127: 113–119.Google Scholar
  25. Somerfield, P. J., F. Olsgard & M. R. Carr, 1997. A further examination of two new taxonomic distinctness measures. Mar. Ecol. Prog. Ser. 154: 303–306.Google Scholar
  26. Vanderklift, M. A., T. J. Ward & C. A. Jacoby, 1996. Effect of reducing taxonomic resolution on ordinations to detect pollution-induced gradients in macrobenthic infaunal assemblages. Mar. Ecol. Prog. Ser. 136: 137–145.Google Scholar
  27. Warwick, R. M., 1988a. Effects on community structure of a pollutant gradient – summary. Mar. Ecol. Prog. Ser. 46: 207–211.Google Scholar
  28. Warwick, R. M., 1988b. Analysis of community attributes of the macrobenthos of Frierfjord/Langesundfjord at taxonomic levels higher than species. Mar. Ecol. Prog. Ser. 46: 167–170.Google Scholar
  29. Warwick, R. M., 1988c. The level of taxonomic discrimination required to detect pollution effects on marine benthic communities. Mar. Pollut. Bull. 6: 259–268.Google Scholar
  30. Warwick, R. M., 1993. Environmental impact studies on marine communities: Pragmatical considerations. Aust. J. Ecol. 18: 63–80.Google Scholar
  31. Warwick, R. M. & K. R. Clarke, 1993. Comparing the severity of disturbance: a meta-analysis of marine macrobenthic community data. Mar. Ecol. Prog. Ser. 92: 221–231.Google Scholar
  32. Warwick, R. M. & K. R. Clarke, 1995. New 'biodiversity' measures reveal a decreases in taxonomic distinctness with increasing stress. Mar. Ecol. Prog. Ser. 129: 301–305.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Frode Olsgard
    • 1
  • Paul J. Somerfield
    • 2
  1. 1.Section of Marine Zoology and Marine Chemistry, Department of BiologyUniversity of OsloOsloNorway. Fax: [+4
  2. 2.Plymouth Marine LaboratoryPlymouthU.K

Personalised recommendations