Skip to main content
Log in

Impact of introduced carp (Cyprinus carpio)in subtropical shallow ponds in Central Mexico

  • Published:
Journal of Aquatic Ecosystem Stress and Recovery

Abstract

In Mexico, as in many other subtropical and tropical countries, there has been a recent trend towards stocking non-native carp (Cyprinus carpio) in lakes and ponds as a source of food in rural areas. However, the results of a study in a series of small(1–8 ha.), shallow (<2 m), semi-natural ponds in Acambay, a high altitude valley in the basin of the Lerma river in the volcanic belt in central west Mexico, illustrate that the stocking of carp over a threshold value may have a detrimental ecological impact at several trophic levels. Ponds with carp tended to be turbid with high levels of suspended solids, and with few rooted macrophytes and epibenthic invertebrates. In contrast, ponds without carp had clear water and abundant rooted macrophytes and associated invertebrates, particularly gastropod molluscs. The direct uprooting of macrophytes by benthic foraging carp appeared to be the most important mechanism in switching the ponds from a clear macrophyte-dominated to a turbid state. The subtropical study ponds thus appear to confirm the alternative stable-state hypothesis developed intemperate lakes, although the importance of benthic rather than pelagic interactions was emphasised. The implications of stocking carp for native fauna of high intrinsic conservation value and as a food supply for local people are outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • APHA (American Publish Health Association), 1985. Standard Methods for the Examination of Water and Wastewater, 16th edn. Amer. Pub. Health. Assoc., Washington. D.C.

    Google Scholar 

  • Bazzanti, M., S. Baldoni & M. Seminara, 1996. Invertebrate macrofauna of a temporary pond in central Italy-composition, community parameters and temporal succession. Arch. Hydrobiol. 137: 77–94.

    Google Scholar 

  • Breukelaar, A., E. Lammens, J.G.P. Klein Breteler & I. Tatrai, 1994. Effects of benthivorous bream (Abramis brama) and carp (Cyprinus carpio) on sediment resuspension and concentrations of nutrients and chlorophyll a. Freshwat. Biol. 32: 112–121.

    Google Scholar 

  • Bronmark, C. & S.E.B. Weisner, 1992. Indirect effects of fish community structure on submerged vegetation in shallow, eutrophic lakes: An alternative mechanism. Hydrobiologia 243/244 (Dev. Hydrobiol. 79): 293–301.

    Article  Google Scholar 

  • Brumley, A.R., 1991. Cyprinids of Australasia. In: Winfield I.J. & J.S. Nelson (eds), Cyprinid Fishes-Systematics, Biology and Exploitation. Fish & Fisheries Series 3. Chapman & Hall, Ltd., London.

    Google Scholar 

  • Cahn, A.R., 1929. The effect of carp on a small lake: The carp as dominant. Ecology 10: 37–374.

    Article  Google Scholar 

  • Carvalho, L. & B. Moss, 1995. The current status of a sample of English Sites of Special Scientific Interest subject to eutrophication. Aquat. Conserv: Mar. Freshwat. Ecosyst. 5(3): 191–204.

    Google Scholar 

  • Carpenter, S.R., J.F. Kitchell, J.F. Hodgson, P.A. Cocharn, J.J. Elser, M.M. Elser, D.M. Lodge, D. Kretchmer, X. He & C.N. Von Ende, 1987. Regulation of lake primary productivity food web structure. Ecology. 68: 1863–1876.

    Article  Google Scholar 

  • Cline, J.M., T.L. East & S.T. Threlkeld, 1994. Fish interactions with the sediment–water interface. Hydrobiologia 275/276 (Dev. Hydrobiol. 94): 301–3012.

    Article  Google Scholar 

  • Crisman, T.L. & R.J. Beaver, 1990. Applicability of planktonic biomanipulation for managing eutrophication in the subtropics. Hydrobiologia 200/201 (Dev. Hydrobiol. 61): 177–183.

    Google Scholar 

  • Crowder, A. & D.S. Painter, 1991. Submerged macrophytes in Lake Ontario: Current knowledge importance, threats to stability, and needed studies. Can. J. Fish. Aquat. Sci. 48(8): 1539–1545.

    Google Scholar 

  • DGN, 1986. Método Sulfato Brusina para determinar Nitratos. NMX-AA-79-1986. Dirección General de Normas, SECOFI, México.

    Google Scholar 

  • Dumont, H.J., 1994. On the diversity of the Cladocera in the tropics. Hydrobiologia 272: 27–38.

    Article  Google Scholar 

  • Espinoza, P.H., D. Gaspar & M. P. Fuentes, 1993. Listados faunísticos de México III, los peces dulceacuícolas mexicanos. Instituto de Biología, UNAM, México.

    Google Scholar 

  • Fernando, C.H., 1991. Impacts of fish introductions in Tropical Asia and America. Can. J. Fish. Aquat. Sci. 48: 24–32.

    Google Scholar 

  • Fernando, C.H., 1994. Zooplankton, fish and fisheries in tropical fresh-waters. Hydrobiologia 272: 105–123.

    Article  Google Scholar 

  • García, E., 1988. Modificaciones al sistema de clasificación climática de Köppen. México.

  • Gliwicz, Z.M., 1994. Relative significance of direct and indirect effects of predation by planktivorous fish on zooplankton. Hydrobiologia 272: 201–210.

    Article  Google Scholar 

  • James, W.F. & J.W. Barko, 1990. Macrophyte influences on the zonation of sediment accretion and composition in a north-temperate reservoir. Arch. Hydrobiol. 2: 129–142.

    Google Scholar 

  • Jeppesen, E., J.P. Jensen, M. Søndergaard, T. Laurisdsen, L.J. Pedersen & L. Jensen, 1997. Top down control in freshwater lakes: The role of fish, submerged macrophytes and water depth. Hydrobiologia 342/343 (Dev. Hydrobiol. 119): 151–164.

    Article  Google Scholar 

  • Irvine, K., B. Moss & H. Balls, 1989. The loss of submerged plants with eutrophication II. Relationships between fish and zooplankton in a set of experimental ponds, and conclusions. Freshwater Biology 22: 89–107.

    Article  Google Scholar 

  • Ivlev, V.S., 1961. Experimental Ecology of the Feeding of Fishes (Transl. by D. Scott). New Haven, Yale University Press.

    Google Scholar 

  • Kalff, J. & S. Watson, 1986. Phytoplankton and its dynamics in two tropical lakes: A tropical and temperate zone comparison. Hydrobiologia 138 (Dev. Hydrobiol. 33): 161–176.

    Article  Google Scholar 

  • Kolasa, J. & L. Weber, 1995. Relationship between the spatial scale an biotic variability in a wetland ecotone. Hydrobiologia 303: 61–67.

    Google Scholar 

  • Lammens, E.H.R.R. & W. Hoogenboezem, 1991. Diets and feeding behaviour. In: I.J. Winfield & J.S. Nelson (eds), Cyprinid Fishes-Systematics, Biology and Exploitation. Fish and Fisheries Series 3. Chapman & Hall., Ltd., London.

    Google Scholar 

  • Lewis, W.M. Jr., 1990. Comparisons of phytoplankton biomass in temperate and tropical lakes. Limnol. Oceanogr. 35: 1838–1845.

    Article  Google Scholar 

  • Lorenzen, C.J., 1966. A method for the continuous measurement of in vivochlorophyll concentrations. Deep-Sea Research 13: 223–227.

    Google Scholar 

  • Matveev, V., C.C. Martinez, S.M. Frutos & Y. Zalocar De Domitrovic, 1992. Population control in planktonic crustaceans of a subtropical lake during seasonal succession. Arch. Hydrobiol. 124: 1–18.

    Google Scholar 

  • Maitland, P.S. & R.N. Campbell, 1992. Freshwater Fishes. Harper Collins Publishers, London.

    Google Scholar 

  • Meijer, M.-L., M.W. De Hann, A.W. Breukelaar & H. Buitveld, 1990. Is reduction of the benthivorous fish an important case of high transparency following biomanipulation in shallow lakes? Hydrobiologia 200/201 (Dev. Hydrobiol. 61): 303–315.

    Google Scholar 

  • Moss, B., J. Stansfield, K. Irvine, M.R. Perrow & G.L. Phillips, 1996. Progressive restoration of a shallow lake: A 12-year experiment in isolation, sediment removal and biomanipulation. J. Applied. Ecology 33: 71–86.

    Article  Google Scholar 

  • Necchi, O. Jr., L.H.Z. Branco & C.C.Z. Branco, 1995. Comparison of three techniques for estimating periphyton abundance in bedrock streams. Arch. Hydrobiol. 134: 393–402.

    Google Scholar 

  • Perrow, M.R., M.-L. Meijer, P. Dawidowicz & H. Coops, 1997. Biomanipulation in shallow lakes: State of the art. Hydrobiologia 342/343 (Dev. Hydrobiol. 119): 355–365.

    Article  Google Scholar 

  • Ramirez-Herrera, M.T., M.A. Summerfield & M.A. Ortiz-Pérez, 1994. Tectonic geomorphology of the Acambay graben, Mexican Volcanic Belt. Z. Geomorph. N. F. 38: 151–168.

    Google Scholar 

  • Renfro, W., 1962. Small beam net for sampling postlarval shrimp. Galveston Biological Lab. June 30. U.S. Fish and Wild. Serv. Circ. 161: 86–87.

    Google Scholar 

  • Richardson, M.J., F.G. Whoriskey & L.H. Roy, 1995. Turbidity generation and biological impacts of an exotic fish Carassiusauratus, introduced into shallow seasonally anoxic ponds. J. Fish Biol. 47: 576–585.

    Google Scholar 

  • Scheffer, M., 1998. Ecology of Shallow Lakes. Chapman & Hall, London.

    Google Scholar 

  • Scheffer, M., S.H. Hosper, M.-L. Meijer, B. Moss & E. Jeppesen, 1993. Alternative equilibria in shallow lakes. TREE 8: 275–279.

    Google Scholar 

  • Siegel, S. & J.N. Castellan Jr., 1988. Nonparametric Statistic for Behavioral Sciences. McGraw-Hill International Editions, 399 pp.

  • Stansfield, J.H., M.R. Perrow, L.D. Tench, A.J.D. Jowitt & A.A.L. Taylor, 1997. Submerged macrophytes as refuges for grazing Cladocera against fish predation: Observations on seasonal changes in relation to macrophyte cover and predation pressure. Hydrobiologia 342/343 (Dev. Hydrobiol. 119): 229–240.

    Article  Google Scholar 

  • Szumiec, M.A., 1989. The role of carp, temperature and morphometry in solar radiation transmission in ponds. Arch. Hydrobiol. Beih. Ergebn. Limnol. 33: 571–577.

    Google Scholar 

  • Tatrai, I. & V. Istvanovics, 1986. The role of fish in the regulation of nutrient cycling in Lake Balaton, Hungary. Freshwat. Biol. 16: 417–424.

    Article  Google Scholar 

  • Tatrai, I., G. Toth, J.E. Ponyi, J. Zlinskzky & V. Istvanovics, 1990. Bottom-up effects of bream (Abramis bramaL.) in Lake Balaton. Hydrobiologia 200/201 (Dev. Hydrobiol. 61): 167–175.

    Google Scholar 

  • Tatrai, I., E.H.R.R. Lammens, A.W. Breukelaar & J.G.P. Klein Breteler, 1994. The impact of mature cyprinid fish on the composition and biomass of benthic macroinvertebrates. Arch. Hydrobiol. 131: 309–320.

    Google Scholar 

  • Ten Winkel, T.E.H. & J.T. Meulemans, 1984. Effects of fish upon submerged vegetation. Hydrobiol. Bull. 18: 157–158.

    Article  Google Scholar 

  • Wetzel, R.G., 1983. Limnology. Saunders College Publishing, USA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zambrano, L., Perrow, M.R., Macías-García, C. et al. Impact of introduced carp (Cyprinus carpio)in subtropical shallow ponds in Central Mexico. Journal of Aquatic Ecosystem Stress and Recovery 6, 281–288 (1998). https://doi.org/10.1023/A:1009958914016

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009958914016

Navigation