Skip to main content
Log in

Microfluidic Cell Separation by 2-dimensional Dielectrophoresis

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

We describe a microfluidic device for separating cells according to their dielectric properties by combining 2-dimensional dielectrophoretic forces with field-flow-fractionation. The device comprises a thin chamber in which a travelling-wave electrical field is generated by a planar, multilayer microelectrode array at the bottom. Under the balance of gravitational and dielectrophoretic levitation forces, cells introduced into the device are positioned at different equilibrium heights in a velocity profile established inside the chamber, and thereby transported at different velocities by the fluid. Simultaneously, cells are subjected to a horizontal travelling-wave dielectrophoretic force that deflects them across the flow stream. The 2-dimensional dielectrophoretic forces acting on cells and the associated velocities in the fluid-flow and travelling-field directions depend sensitively on cell dielectric properties. The responses of cultured MDA-435 human breast cancer, HL-60 human leukemia and DS19 murine erythroleukemia cells, and of peripheral blood mononuclear (PBMN) cells were studied as functions of the frequency and voltage of the applied electric signals, and of the fluid flow rate. Significant differences were observed between the responses of different cell types. Cell separation was demonstrated by the differential redistribution of MDA-435 and PBMN cells as they flowed through the device. The device can be readily integrated with other microfluidic components for microscale sample preparation and analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • W.M. Arnold and U. Zimmermann, J. Electrostat 21, 151 (1988).

    Google Scholar 

  • F.F. Becker, X.-B. Wang, Y. Huang, R. Pethig, J. Vykoukal, and P.R.C. Gascoyne, Proc. Natl. Acad. Sci. (USA) 29, 860 (1995).

    Google Scholar 

  • J.P. Brody, Y. Han, R.H. Austin, and M. Bitensky, Biophys. J. 68, 2224 (1995).

    Google Scholar 

  • R.H. Carlson, C. Gabel, S. Chan, and R.H. Austin, Biomedical microdevices 1, 39 (1998).

    Google Scholar 

  • J. Cheng, E.L. Sheldon, L. Wu, A. Uride, L.O. Gerrue, and J. Carrino, Nat. Biotechnol 16, 541 (1998).

    Google Scholar 

  • G. Fuhr, T. Schnelle, R. Hagedorn, and S.G. Shirley, Cellular Eng. Autumn, 47 (1995a).

  • G. Fuhr, T. Schnelle, T. Muller, H. Glasser, T. Lisec, and B. Wagner, Sensors & Materials 7, 131 (1995b).

    Google Scholar 

  • G. Fuhr, U. Zimmermann, and S.G. Shirley in Electromanipulation of cells, edited by U. Zimmermann and G.A. Neil (CRC press, Boca Raton) 259-328, (1995c).

    Google Scholar 

  • P.R.C. Gasocyne, X.-B. Wang, Y. Huang, and F.F. Becker, IEEE Trans. Ind. Appl. 33, 670 (1997).

    Google Scholar 

  • J.C. Giddings, Science 60, 1456 (1993).

    Google Scholar 

  • R. Glaser and G. Fuhr, in Electric Double Layers in Biology, edited by M. Blank, (Plenum Press, New York, 1986) 227-242.

    Google Scholar 

  • Y. Huang, A.C. Electrokinetics of colloidal particles (Ph.D. Thesis, University of Wales, Bangor, UK, 1994) 32-39.

    Google Scholar 

  • Y. Huang, X.-B. Wang, F.F. Becker, and P.R.C. Gascoyne, Biochim. Biophys. Acta. 1282, 76 (1996).

    Google Scholar 

  • Y. Huang, X.-B. Wang, P.R.C. Gascoyne, and F.F. Becker, Biophys. J. 73, 1118 (1997).

    Google Scholar 

  • Y. Huang, X.-B. Wang, J. Tame, and R. Pethig, J. Phys. D: Appl. Phys. 26, 1528 (1993).

    Google Scholar 

  • K.V.I.S. Kaler and T.B. Jones, Biophys. J. 57, 173 (1990).

    Google Scholar 

  • L.J. Kricka, Clinical Chem. 44, 2008 (1998).

    Google Scholar 

  • T. Lea, J.P. O'Connell, K. Nustad, S. Funderud, A. Berge, and A. Rembaum, in Flow cytometry and sorting, edited by M.R. Melamed, T. Lidmo and M.L. Mendelson (Wiley-Liss, New York, 1990) 367-380.

    Google Scholar 

  • G.H. Markx, Y. Huang, X.-F. Zhou, and E. Pethig, Microbiol 140, 585 (1994).

    Google Scholar 

  • G.H. Markx and R. Pethig, Biotechnol. Bioeng 45, 337 (1995).

    Google Scholar 

  • G.H. Markx, J. Rousselet, and R. Pethig, J. Liq. Chrom. & Rel. Technol 20, 2857 (1997).

    Google Scholar 

  • A. Marshall and J. Hodgson, Nat. Biotechnol 16, 27 (1998).

    Google Scholar 

  • S. Masuda, M. Washizu, and M. Iwadare, IEEE Trans. Ind. Appl. 23, 474 (1987).

    Google Scholar 

  • J.R. Melcher, Phys. Fluids. 9, 1548 (1966).

    Google Scholar 

  • T. Müller, W.M. Arnold, T. Schnelle, R. Hagedorn, G. Fuhr, and U. Zimmermann, Electrophoresis 14, 764 (1993).

    Google Scholar 

  • M.G. Ormerod, Flow cytometry: a practical approach (IRL Press at Oxford University Press, Oxford, U.K., 1994).

    Google Scholar 

  • R. Pethig, Crit. Rev. Biotechnol 16, 331 (1996).

    Google Scholar 

  • P.H. Rhodes and R.S. Snyder, in Cell Electrophoresis, edited by J. Bauer (CRC Press, Boca Raton, 1994) 57-74.

    Google Scholar 

  • T. Schnelle, R. Hagedorn, G. Fuhr, S. Fiedler, and T. Muller, Biochim. Biophys. Acta. 1157, 127 (1993).

    Google Scholar 

  • M. Stephens, M.S. Talary, R. Pethig, A.K. Burnett, and K.I. Bone, Marrow Transplant 18, 777 (1996).

    Google Scholar 

  • A. van den Berg and T.S.J Lammerink, in Topics in current chemistry, edited by A. Manz and H. Becker (Springer-Verlag, Heidelberg, Germany, 1998) 194, 21-50.

    Google Scholar 

  • X.-B. Wang, Y. Huang, J.P.H. Burt, G.H. Markx, and R. Pethig, J. Phys. D: Appl. Phys. 26, 1278 (1993).

    Google Scholar 

  • X.-B. Wang, M.P. Hughes, Y. Huang, F.F. Becker, and P.R.C. Gascoyne, Biochim. Biophys. Acta. 1243, 185 (1995).

    Google Scholar 

  • X.-B. Wang, Y. Huang, P.R.C. Gascoyne, and F.F. Becker, IEEE Trans. Ind. Appl. 33, 660 (1997a).

    Google Scholar 

  • X.-B. Wang, Y. Huang, X. Wang, F.F. Becker, and P.R.C. Gascoyne, Biophys. J. 72, 1887 (1997b).

    Google Scholar 

  • M. Washizu, T. Nanba, and S. Masuda IEEE Trans. Ind. Appl. 26, 352 (1990).

    Google Scholar 

  • P. Wilding, L.J. Kricka, J. Cheng, G. Hvichia, M.A., Shoffner, and P. Fortina, Anal. Biochem 257, 95 (1998).

    Google Scholar 

  • P.S. Williams, T. Koch, and J.C. Giddings, Chem. Eng. Comm. 111, 121 (1992).

    Google Scholar 

  • J. Yang, Y. Huang, X-B. Wang, F.F. Becker, and P.R.C. Gascoyne, Anal. Chem. 71, 911 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gasperis, G.D., Yang, J., Becker, F.F. et al. Microfluidic Cell Separation by 2-dimensional Dielectrophoresis. Biomedical Microdevices 2, 41–49 (1999). https://doi.org/10.1023/A:1009955200029

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009955200029

Navigation