Skip to main content
Log in

Ion Implantation of Optical Ferroelectrics

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

We discuss ion implantation as a powerful non-equilibrium processing technology and show its potential for optical waveguide formation by damage engineering and by direct doping. Also the strong improvement of photorefractive properties by implantation-induced vacancies is demonstrated. Finally recent results of the growth of thin ferroelectric films by laser epitaxy and metal-organic vapor-phase epitaxy are presented. The combination of thin film growth techniques of optical ferroelectrics together with ion beam modification will prove important in this strongly advancing field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.F. Ziegler, Ion Implantation Technology, (North Holland, Amsterdam, 1992).

    Google Scholar 

  2. S. Mantl, Mat. Sci. Rep., 8, 1 (1992).

    Google Scholar 

  3. C.W. White, J.D. Budai, J.G. Zhu, S.P. Withrow, D.M. Hembree, D.O. Henderson, A. Ueda, Y.S. Tung, and R. Mu, Mat. Res. Soc. Symp. Proc., 396, 377 (1996).

    Google Scholar 

  4. P.D. Townsend, P.J. Chandler, and L. Zhang, Optical Effects of Ion Implantation, (Cambridge University Press, 1994).

  5. P. Mazzoldi and G.W. Arnold, eds., Ion Beam Modification of Insulators, (Elsevier, Amsterdam, 1987).

    Google Scholar 

  6. J.P. Biersack and L.G. Haggmark, Nucl. Instr. and Meth., 174, 257 (1980).

    Google Scholar 

  7. P.D. Townsend, Rep. Prog. Phys., 50, 501 (1987).

    Google Scholar 

  8. P.D. Townsend, Nucl. Instr. and Meth., B46, 18 (1990).

    Google Scholar 

  9. Ch. Buchal, S.P. Withrow, C.W. White, and D.B. Poker, Ann. Rev. Mat. Sci., 24, 125 (1994).

    Google Scholar 

  10. D. Fluck, R. Irmscher, Ch. Buchal, and P. Günter, Ferroelectrics, 128, 79 (1992).

    Google Scholar 

  11. D.T.Y. Wei, W.W. Lee, and L.R. Bloom, Appl. Phys. Lett., 25, 329 (1974).

    Google Scholar 

  12. R. Irmscher, D. Fluck, Ch. Buchal, B. Stritzker, and P. Günter, Mat. Res. Soc. Proc., 201, 399 (1991).

    Google Scholar 

  13. D. Fluck, Ion Implanted KnbO3 Waveguides for Blue Light Second Harmonic Generation Thesis, ETH Zürich, No. 11225, (Zürich, 1995).

  14. F.P. Strohkendl, D. Fluck, and P. Günter, Appl. Phys. Lett., 59, 3354 (1991).

    Google Scholar 

  15. D. Fluck, B. Binder, M. Küpfer, H. Looser, Ch. Buchal, and P. Günter, Opt. Comm., 90, 304 (1992).

    Google Scholar 

  16. D. Fluck, D.H. Jundt, P. Günter, M. Fleuster, and Ch. Buchal, J. Appl. Phys., 74, 6023 (1993).

    Google Scholar 

  17. D. Fluck, P. Günter, M. Fleuster, and Ch. Buchal, J. Appl. Phys., 72, 1671 (1992).

    Google Scholar 

  18. D. Fluck, J. Moll, P. Günter, M. Fleuster, and Ch. Buchal, Eletron. Lett., 28, 1092 (1992).

    Google Scholar 

  19. G.T. Reed and B.L. Weiss, Nucl. Instr. and Meth., B19/20, 907 (1987).

    Google Scholar 

  20. G.T. Reed and B.L. Weiss, Electr. Lett., 23, 792 (1987).

    Google Scholar 

  21. T. Pliska, D. Fluck, P. Günter, L. Beckers, and Ch. Buchal, J. Opt. Soc. Am., B15, 628 (1998).

    Google Scholar 

  22. T. Pliska, D.H. Jundt, D. Fluck, P. Günter, M. Fleuster, and Ch. Buchal, Electr. Lett., 30, 562 (1994).

    Google Scholar 

  23. T. Pliska, D.H. Jundt, D. Fluck, and P. Günter, J. Appl. Phys., 77, 6114 (1995).

    Google Scholar 

  24. T. Pliska, Potassium Niobate Channel Waveguides for Blue Light Second-Harmonic Generation Thesis, ETH Zürich No. 12222 (Zürich 1997).

  25. D. Fluck, T. Pliska, P. Günter, St. Bauer, L. Beckers, and Ch. Buchal, Appl. Phys. Lett., 69, 4133 (1996).

    Google Scholar 

  26. P. Moretti, P. Thevenard, K. Wirl, P. Hertel, H. Hesse, E. Krätzig, and G. Godefroy, Ferroelectrics, 128, 13 (1992).

    Google Scholar 

  27. S. Brülisauer, Control of the Photorefractive Effect in KnbO3 by Ion Implantation Thesis, ETH Zürich No. 12625 (Zuürich 1998).

  28. S. Brülisauer, D. Fluck, P. Günter, L. Beckers, and Ch. Buchal, J. Opt. Soc. Am., B 13, 2544 (1996).

    Google Scholar 

  29. S. Brülisauer, D. Fluck, P. Günter, L. Beckers, and Ch. Buchal, Opt. Comm., 153, 375 (1998).

    Google Scholar 

  30. H. Nishihara, M. Haruna, and T. Suhara, Optical Integrated Circuits (McGraw-Hill, New York 1989).

    Google Scholar 

  31. Ch. Buchal, Structure Property Relationship in Surface-Modified Ceramics ed. C. J. Mc Hargue et al. 389 (Kluwer Dordrecht, 1989).

  32. P.R. Ashley, W.S.C. Chang, Ch. Buchal, and D.K. Thomas, IEEE J. Lightwave Techn., 7, 855 (1989).

    Google Scholar 

  33. T. Bremer, W. Heiland, Ch. Buchal, R. Irmscher, and B. Stritzker, J. Appl. Phys., 67, 1183 (1990).

    Google Scholar 

  34. Ch. Buchal, Nucl. Instr. Meth., B59/60, 1142 (1991).

    Google Scholar 

  35. Ch. Buchal, Nucl. Instr. Meth., B68, 355 (1992).

    Google Scholar 

  36. D.B. Poker and D.K. Thomas, J. Mat. Res., 4, 412 (1989).

    Google Scholar 

  37. M. Fleuster, Ch. Buchal, E. Snoeks, and A. Polman, J. Appl. Phys., 75, 173 (1994).

    Google Scholar 

  38. St. Bauer, Epitaxial Growth of LiNbO3 on Sapphire Thesis (German), Jül-Bericht, Forschungszentrum Jülich No. 3056 (Jülich 1995).

  39. Ch. Buchal and St. Mohr, J. Mat. Res., 6, 134 (1991).

    Google Scholar 

  40. I. Baumann, Appl. Phys., A64, 33 (1997).

    Google Scholar 

  41. M. Fleuster, Ch. Buchal, E. Snoeks, and A. Polman, Appl. Phys. Lett., 65, 225 (1994).

    Google Scholar 

  42. A.M. Prokhorov, Yu S. Kuzminov, and O.A. Khachaturyan, Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics (Cambridge International Science Publishing 1996) and references therein.

  43. D.K. Fork, F. Armani-Leplingard, J.J. Kingston, and G.B. Anderson, Mat. Res. Soc. Symp. Proc., 392, 189 (1995).

    Google Scholar 

  44. L. Beckers, Epitaxial Ferroelectrical Thin Optical Film Thesis (German), Jül-Bericht Forschungszentrum Jülich No. 3554 (Jülich 1998) (includes 111 references).

  45. L. Beckers, J. Schubert, W. Zander, J. Ziesmann, A. Eckau, P. Leinenbach, and Ch. Buchal, J. Appl. Phys., 83, 3305 (1998).

    Google Scholar 

  46. R. Nawathey, R.D. Vispute, S.M. Chaudhari, S.M. Kanetkar, and S.B. Ogale, Solid State Comm., 71, 9 (1989).

    Google Scholar 

  47. D.H. Kim and H.S. Kwok, Appl. Phys. Lett., 67, 1803 (1995).

    Google Scholar 

  48. T. Okada, Y. Nakata, H. Kaibara, and M. Maeda, Jpn. J. Appl. Phys., 34, L1536 (1995).

    Google Scholar 

  49. S. Tsunekawa, T. Fukuda, T. Ozaki, Y. Yoneda, and H. Terauchi, Appl. Phys. Lett., 71, 1486 (1997).

    Google Scholar 

  50. Mat. Res. Soc. Bulletin 17, 2 Feb. 1992, Pulsed Laser Deposition.

  51. S.-H. Lee, T.W. Noh, and J.-H. Lee, Appl. Phys. Lett., 68, 472 (1996).

    Google Scholar 

  52. R.A. McKee, F.J. Walker, E.D. Specht, G.E. Jellison, and L.A. Boatner, Phys. Rev. Lett., 72, 2741 (1994).

    Google Scholar 

  53. F.J. Walker, R.A. McKee, H.-W. Yen, and D.E. Zelmon, Appl. Phys. Lett., 64, 1495 (1994).

    Google Scholar 

  54. D.M. Gill, B.A. Block, C.W. Conrad, B.W. Wessels, and S.T. Ho, Appl. Phys. Lett., 69, 2968 (1996).

    Google Scholar 

  55. D.M. Gill, C.W. Conrad, G. Ford, B.W. Wessels, and S.T. Ho, Appl. Phys. Lett., 71, 1783 (1997).

    Google Scholar 

  56. D.M. Gill, G.M. Ford, B.A. Block, B.W. Wessels, and S.T. Ho, Mat. Res. Soc. Symp. Proc., 486, 343 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buchal, C., Fluck, D. & Gu¨nter, P. Ion Implantation of Optical Ferroelectrics. Journal of Electroceramics 3, 179–193 (1999). https://doi.org/10.1023/A:1009951311965

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009951311965

Navigation