Skip to main content
Log in

DNS and Modelling of Passive Scalar Transport in Turbulent Channel Flow with a Focus on Scalar Dissipation Rate Modelling

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

A direct numerical simulation of turbulent channel flow with an imposed mean scalar gradient is analyzed with a focus on passive scalar flux modelling and in particular the treatment of the passive scalar dissipation equation. The Prandtl number is 0.71 and the Reynolds number based on the wall friction velocity and the channel half width is 265. Budgets are presented for the passive scalar variance and its dissipation rate, as well as for the individual scalar flux components. These form a basis for a discussion of modelling issues related to explicit algebraic scalar flux modelling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Corrsin, S., Heat transfer in isotropic turbulence. J. Appl. Phys. 23 (1952) 113-118.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  2. Daly, B.J. and Harlow, F.H., Transport equations in turbulence. Phys. Fluids 13 (1970) 2634-2649.

    Article  ADS  Google Scholar 

  3. Gibson, M.M. and Launder, B.E., Ground effects on pressure fluctuations in the atmospheric boundary layer. J. Fluid Mech. 86 (1978) 491-511.

    Article  MATH  ADS  Google Scholar 

  4. Kasagi, N., Tomita, Y. and Kuroda, A., Direct numerical simulation of passive scalar field in a turbulent channel flow. Trans. ASME 114 (1992) 598-606.

    Article  Google Scholar 

  5. Kasagi, N. and Ohtsubo, Y., Direct numerical simulation of passive scalar field in a turbulent channel flow. In: Durst, F., Kasagi, N., Launder, B.E. and Whitelaw, J.H. (eds), Turbulent Shear Flows 8. Springer-Verlag, Berlin (1993) pp. 97-119.

    Google Scholar 

  6. Kawamura, H. and Ihira, H., DNS and modeling of scalar transport in homogeneous turbulence. In: Rodi, W. and Bergeles (eds), Engineering Turbulence Modelling and Experiments 3. Elsevier, Amsterdam (1996) pp. 239-249.

    Google Scholar 

  7. Kawamura, H., Ohsaka, K., Abe, H. and Yamamoto K., DNS of turbulent heat transfer in channel flow with low to medium-high Prandtl number fluid. Internat. J. Heat Fluid Flow 19 (1998) 482-491.

    Article  Google Scholar 

  8. Kawamura, H., Abe, H. and Matsuo, Y., DNS of turbulent heat transfer in channel flow with respect to Reynolds and Prandtl number effect. Internat. J. Heat Fluid Flow 20 (1999) 196-207.

    Article  Google Scholar 

  9. Kim, J. and Moin, P., Transport of passive scalars in a turbulent channel flow. In: Turbulent Shear Flows 6. Springer-Verlag, Berlin (1989) pp. 85-96.

    Google Scholar 

  10. Launder, B.E., On the effects of a gravitational field on the turbulent transport of heat and momentum. J. Fluid Mech. 67 (1975) 569-581.

    Article  ADS  Google Scholar 

  11. Launder, B.E., Heat and mass transport. In: Bradshaw, P. (ed.), Topics in Physics, Vol. 12. Springer-Verlag, New York (1978) pp. 231-287.

    Google Scholar 

  12. Lundbladh, A., Henningson, D. and Johansson, A.V., An efficient spectral integration method for the solution of the Navier-Stokes equations. FFA-TN 1992-28, Aeronautical Research Institute of Sweden, Bromma (1992).

    Google Scholar 

  13. Na, Y., Papavassiliou, D.V. and Hanratty, T.J., Use of direct numerical simulation to study the effect of Prandtl number on temperature fields. In: Turbulent Heat Transfer II, Manchester, May 31–June 5 (1998) pp. 1-3-1-14.

    Google Scholar 

  14. Nagano, Y. and Kim, C., A two-equation model for heat transport in wall turbulent shear flows. J. Heat Transfer 110 (1988) 583-589.

    Article  Google Scholar 

  15. Newman, G.R., Launder, B.E. and Lumley, J.L., Modelling the behaviour of homogeneous scalar turbulence. J. Fluid Mech. 111 (1981) 217-232.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  16. Overholt, M.R. and Pope, S.B., Direct numerical simulation of a passive scalar with imposed mean scalar gradient in isotropic turbulence. Phys. Fluids 8 (1996) 3128-3148.

    Article  MATH  ADS  Google Scholar 

  17. Rogers, M.M., Mansour, N.N. and Reynolds, W.C., An algebraic model for the turbulent flux of a passive scalar. J. Fluid Mech. 203 (1989) 77-101.

    Article  ADS  Google Scholar 

  18. Rogers, M., Moin, P. and Reynolds, W., The structure and modeling of the hydrodynamic and passive scalar fields in homogeneous turbulent shear flow. Department of Mechanical Engineering, Stanford University, Stanford, CA, Report TF-25 (1986).

    Google Scholar 

  19. Sanders, J.P.H. and Gökalp, I., Scalar dissipation rate modelling in variable density turbulent axisymmetric jets and diffusion flames. Phys. Fluids 10 (1998) 938-948.

    Article  ADS  Google Scholar 

  20. Shabany, Y. and Durbin, P.A., Explicit algebraic scalar flux approximation, AIAA J. 35 (1997) 985-989.

    Article  MATH  ADS  Google Scholar 

  21. Shih, T.H., Constitutive relations and realizability of single-point turbulence closures. In: Hallbäck, M., Henningson, D.S., Johansson, A.V. and Alfredsson, P.H. (eds), Turbulence and Transition Modeling. Kluwer Academic Publishers, Dordrecht (1996) pp. 155-192.

    Google Scholar 

  22. Sirivat, A. and Warhaft, Z., The effect of a passive cross-stream temperature gradient on the evolution of temperature variance and heat flux in grid turbulence. J. Fluid. Mech. 128 (1983) 323-346.

    Article  ADS  Google Scholar 

  23. Tavoularis, S. and Corrsin, S., Experiments in nearly homogeneous turbulent shear flow with a uniform mean temperature gradient. J. Fluid. Mech. 104 (1981) 311-367.

    Article  ADS  Google Scholar 

  24. Taylor, G.I., The transport of vorticity and heat through fluids in turbulent motion. Proc. Roy. Soc. A 135 (1932) 685-705.

    MATH  ADS  Google Scholar 

  25. Warhaft, Z. and Lumley, J.L., An experimental study of decay of temperature fluctuations in grid-generated turbulence. J. Fluid. Mech. 88 (1978) 659-685.

    Article  ADS  Google Scholar 

  26. Wikström, P.M., Hallbäck, M. and Johansson, A.V., Measurements and heat-flux transport modelling in a heated cylinder wake. Internat. J. Heat Fluid Flow 19 (1998) 556-562.

    Article  Google Scholar 

  27. Wikström, P.M. and Johansson, A.V., DNS and scalar-flux transport modelling in a turbulent channel flow. In: Turbulent Heat Transfer II, Manchester, May 31–June 5 (1998).

  28. Wikström, P.M., Wallin, S. and Johansson, A.V., Derivation and investigation of a new explicit algebraic model for the passive scalar flux. Phys. Fluids 12 (2000) 688-702.

    Article  ADS  MATH  Google Scholar 

  29. Yoshizawa, A., Statistical modelling of passive-scalar diffusion in turbulent shear flows. J. Fluid. Mech. 195 (1988) 541-555.

    Article  MATH  ADS  Google Scholar 

  30. Österlund, J.M., Johansson, A.V., Nagib, H.M. and Hites, M.H., A note on the overlap region in turbulent boundary layers. Phys. Fluids 12 (2000) 1-4.

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johansson, A.V., Wikström, P.M. DNS and Modelling of Passive Scalar Transport in Turbulent Channel Flow with a Focus on Scalar Dissipation Rate Modelling. Flow, Turbulence and Combustion 63, 223–245 (2000). https://doi.org/10.1023/A:1009948606944

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009948606944

Navigation