Skip to main content
Log in

Effect of elevated atmospheric carbon dioxide on the use of foliar application of Bacillus thuringiensis

  • Published:
BioControl Aims and scope Submit manuscript

Abstract

Toxins from Bacillus thuringiensis have beenused as pest management tools for more than 50 years. The effect of these toxins depends on the quantityof Bacillus thuringiensis (Bt) toxins ingestedby susceptible insects. Food ingestion is affected byCO2 concentration; plants grown in elevatedCO2 often have increased carbon/nitrogen ratios(C/N), resulting in greater leaf area consumption. Therefore, we hypothesized that elevated CO2would improve the efficacy of foliar applications ofB. thuringiensis. Cotton plants were grown ateither ambient (360–380 μl/l) or elevated CO2(900 μl/l). Groups of plants in both CO2treatments were exposed to low (30 mg/kg soil/week) orhigh (130 mg/kg soil/week) nitrogen (N) fertilizationlevels in a split plot design. The resulting plantswere assessed for N and carbon (C) contents. Leafdisks from the same plants were dipped in a Btsolution and then fed to Spodoptera exigua(Hübner), an insect species of considerableeconomic importance. Elevated CO2 significantlyreduced total N, and increased the C/N. Nitrogenfertilization significantly affected consumption byearly stadia larvae, larval weight gain, and relativegrowth rate (RGR). Interactions between CO2concentration and N fertilization level significantlyimpacted late stadia larval food consumption, andthrough differential Bt toxin intake, affectedduration of larval stage and mortality to the adultstage. We conclude that the elevated atmosphericCO2 concentrations expected in the next centurywill interact with commercial fertilization practicesto enhance the efficacy of B. thuringiensisformulations applied topically to crops. Theimplications for improved control are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acock, B., V.R. Reddy, H.F. Hodges, D.N. Baker and J.M. McKinion, 1985. Photosynthetic response of soybean Glycine max canopies to full-season carbon dioxide enrichment. Agronomy Journal 77(6): 942–947.

    Google Scholar 

  • Arnone, J.A., III, J.G. Zaller, C. Ziegler, H. Zandt and C. Korner, 1995. Leaf quality and insect herbivory in model tropical plant communities after long-term exposure to elevated atmospheric CO-2. Oecologia 104(1): 72–78.

    Google Scholar 

  • Arp, W.J. and B.G. Drake, 1991. Increased photosynthetic capacity of Scirpus olneyi after 4 years of exposure to elevated carbon dioxide. Plant Cell and Environ. 14(9): 1003–1006.

    Google Scholar 

  • Bauer, L.S., 1995. Resistance: A threat to the insecticidal crystal proteins of Bacillus thuringiensis. Florida Entomol. 78(3): 414–443.

    Google Scholar 

  • Bazzaz, F.A. and E.D. Fajer, 1992. Plant life in a carbon dioxide rich world. Sci.American 266(1): 68–74.

    Google Scholar 

  • Becker, N. and M. Ludwig, 1993. Investigations on possible resistance in Aedes vexans field populations after a 10-year application of Bacillus thuringiensis-israelensis. J.of the American Mosquito Control Association 9(2): 221–224.

    Google Scholar 

  • Bentz, J.A., J. Reeves, III, P. Barbosa and B. Francis, 1995. Within-plant variation in nitrogen and sugar content of poinsettia and its effects on the oviposition pattern, survival, and development of Bemisia argentifolii (Homoptera: Aleyrodidae). Environ.Entomol. 24(2): 271–277.

    Google Scholar 

  • Berdegué, M., J.T. Trumble and W.J. Moar, 1996. Effect of CryIC toxin from Bacillus thuringiensis on larval feeding behavior of Spodoptera exigua. Entomol.Exp.Appl. 80(2): 389–401.

    Google Scholar 

  • Biever, K.D., D.L. Hostetter and J.R. Kern, 1994. Evolution and implementation of a biological control-IPM system for crucifers: 24-year case history. Am.Entomol. 40(2): 103–108.

    Google Scholar 

  • Castro, G., 1991. Global warming causes consequences and some implications for latin america. Interciencia 16(3): 119–124, 162.

    Google Scholar 

  • Coviella, C.E. and J.T. Trumble, 1999. Effects of elevated atmospheric CO2 on insect-plant interactions. Conservation Biol. 13(8): 1–13.

    Google Scholar 

  • Crawley, M.J., 1993. GLIM for Ecologists. Blackwell Scientific Publications, Oxford.

    Google Scholar 

  • Diawara, M.M., J.T. Trumble, C.F. Quiros and J.G. Millar, 1992. Resistance to Spodoptera exigua in Apium prostratum. Entomol.Exp.Appl. 64: 125–133.

    Google Scholar 

  • Diaz, S., L.H. Fraser, J.P. Grime and V. Falczuk, 1998. The impact of elevated CO2 on plantherbivore interactions: Experimental evidence of moderating effects at the community level. Oecologia 117(1–2): 177–186.

    Google Scholar 

  • Duplessy, J.C., 1992. Paleoclimatological certainties. La Recherche 23(243): 558–562.

    Google Scholar 

  • Environmental Protection Agency, 1999. The draft 1999 inventory of U.S. greenhouse emissions and sinks (1990–1997). Draft for public comment. Electronic source: http://www.epa.gov/globalwarming/inventory/199 9-inv.html, U.S.

  • Estiarte, M., J. Peñuelas, B.A, Kimball, D.L. Hendrix, P.J. Pinter, G.W. Wall, R.L. La Morte and D.J. Hunsaker, 1999. Free-air CO2 enrichment of wheat: leaf flavonoid concentration throughout the growth cycle. Physiol.Plantarum 105(3): 423–433.

    Google Scholar 

  • Fajer, E.D., M.D. Bowers and F.A. Bazzaz, 1989. The effects of enriched carbon dioxide atmospheres on plant-insect herbivore interactions. Science 243(4895): 1198–1200.

    Google Scholar 

  • Fajer, E.D., M.D. Bowers and F.A. Bazzaz, 1991. The effects of enriched carbon dioxide atmospheres on the buckeye butterfly J.coenia.Ecol. 72(2): 751–754.

    Google Scholar 

  • Fan, S., M. Gloor, J. Mahlman, S. Pacala, J. Sarmiento, T. Takahashi and P. Tans, 1998. A large terrestrial carbon sink in North America implied by atmospheric and oceanic carbon dioxide data and models. Science 282(5388): 442–446.

    PubMed  Google Scholar 

  • Frankenhuyzen, K. van., 1993. The Challenge of Bacillus thuringiensis. In: P. Entwistle, J. Cory, M. Bailey and S. Higgs, (eds), Bacillus thuringiensis, an Environ.Biopesticide: Theory and Practice. John Wiley and Sons, New York. pp. 1–35.

    Google Scholar 

  • Gharib, A.H. and J.A. Wyman, 1991. Food consumption and survival of Trichoplusia ni (Lepidoptera: Noctuidae) larvae following intoxication by Bacillus thuringiensis var. Kurstaki and Thuringhiensin. J.Econ.Entomol. 84(2): 436–439.

    Google Scholar 

  • Georghiou, G.P. and M.C. Wirth, 1997. Influence of exposure to single versus multiple toxins of Bacillus thuringiensis subsp. israelensis on development of resistance in the mosquito Culex quinquefasciatus (Diptera: Culicidae). Appl.and Environ.Microbiology 63(3): 1095–1101.

    Google Scholar 

  • Hails, R.S. and M.J. Crawley, 1992. Spatial density dependence in populations of a cynipid gall-former Andricus quercuscalicis. J.Animal Ecol. 61(3): 567–583.

    Google Scholar 

  • Houghton, J.T. (ed.) 1996. Climate change 1995: the science of climate change. Cambridge University Press, Cambridge.

    Google Scholar 

  • Huang, F., L.L. Buschman, R.A. Higgins and W.H. McGaughey, 1999. Inheritance of resistance to Bacillus thuringiensis toxin (Dipel ES) in the european corn borer. Science 284(5416): 965–967.

    PubMed  Google Scholar 

  • Joos, F., G.K. Plattner, T.F. Stocker, O. Marchal and A. Schmittner, 1999. Global warming and marine carbon cycle feedbacks an future atmospheric CO2. Science 284(5413): 464–467.

    PubMed  Google Scholar 

  • Karowe, D.N., D.H. Seimens and T. Mitchell-Olds, 1997. Species-specific response of glucosinolate content to elevated atmospheric CO-2. J.Chem.Ecol. 23(11): 2569–2582.

    Google Scholar 

  • Kerslake, J.E., S.J. Woodin and S.E.Hartley, 1998. Effects of carbon dioxide and nitrogen enrichment on plant-insect interaction: The quality of Calluna vulgaris as a host for Operophtera brumata. New Phytol. 140(1): 43–53.

    Google Scholar 

  • Koppenhofer, A.M. and H.K. Kaya, 1997. Additive and synergistic interaction between entomopathogenic nematodes and Bacillus thuringiensis for scarab grub control. Biol.Control 8(2): 131–137.

    Google Scholar 

  • Lincoln, D.E., E.D. Fajer and R.H. Johnson, 1993. Plant-insect herbivore interactions in elevated carbon dioxide environments. Trends in Ecol.Evol. 8(2): 64–68.

    Google Scholar 

  • Lindroth, R.L., K.K. Kinney and C.L. Platz, 1993. Responses of deciduous trees to elevated atmospheric carbon dioxide productivity phytochemistry and insect performance. Ecology 74(3): 763–777.

    Google Scholar 

  • Mahlman, J.D., 1997. Anticipated climate changes in a high-CO2 world: Implications for long term planning, U.S. Global Change Research Program. Electronic source: http://www.usgcrp.gov/usgcrp/9799DD.html.

  • Marks, S. and D.E. Lincoln, 1996. Antiherbivore defense mutualism under elevated carbon dioxide levels: A fungal endophyte and grass. Environ.Entomol. 25(3): 618–623.

    Google Scholar 

  • Minkenberg, O.P.J.M. and M.J.J. Fredrix, 1989. Preference and performance of an herbivorous fly, Liriomyza trifolii (Diptera: Agromyzidae), on tomato plants differing in leaf nitrogen. Annals of the Entomol.Soc.America 82(3): 350–354.

    Google Scholar 

  • Minkenberg, O.P.J.M. and J.J.G.W. Ottenheim, 1990. Effect of leaf nitrogen content of tomato plants on preference and performance of a leafmining fly. Oecologia 83(3): 291–298.

    Google Scholar 

  • Osbrink, W.L.A., J.T. Trumble and R.E. Wagner, 1987. Host suitability of Phaseolus lunata for Trichoplusia ni (Lepidoptera: Noctuidae) in controlled carbon dioxide atmospheres. Environ.Entomol. 16: 639–644.

    Google Scholar 

  • Peñuelas, J., M. Estiarte, B.A. Kimball, S.B. Idso, P.J. Pinter Jr., G.W. Wall, R.L. Garcia, D.J. Hansaker, R.L. Lamorte and D.L. Hendrix, 1996. Varety of responses of plant phenolic concentration to CO-2 enrichment. J.Experimental Botany 47(302): 1463–1467.

    Google Scholar 

  • Peñuelas, J., M. Estiarte and J. Llusia, 1997. Carbon-based secondary compounds at elevated CO-2. Photosynthetica 33(2): 313–316.

    Google Scholar 

  • Polle, A., M. Eiblmeier, L. Sheppard and M. Murray, 1997. Responses of antioxidative enzymes to elevated CO-2 in leaves of beech (Fagus sylvatica L.) seedlings grown under a range of nutrient regimes. Plant Cell and Environ. 20(10): 1317–1321.

    Google Scholar 

  • Raynaud, D., J. Jouzel, J.M. Barnola, J. Chappellaz, R.J. Delmas and C. Lorius, 1993. The ice record of greenhouse gases. Science 259(5097): 926–934.

    Google Scholar 

  • Rogers, G.S., P.J. Milham, M.C. Thibaud and J.P. Conroy, 1996. Interactions between rising CO-2 concentration and nitrogen supply in cotton. I. Growth and leaf nitrogen concentration. Australian J.Plant Physiol. 23(2): 119–125.

    Google Scholar 

  • Sarmiento, J.L., T.M.C. Hughes, R.J. Stouffer and S. Manabe, 1998. Simulated response of the ocean carbon cycle to anthropogenic climate waming. Nature 393(6682): 245–249.

    Google Scholar 

  • Sarmiento, J.L. and C. Le Quere, 1996. "Oceanic carbon dioxide uptake in a model of centuryscale global warming. Science 274(5291): 1346–1350.

    Article  PubMed  Google Scholar 

  • Schmidt, D.J. and J.C. Reese, 1986. Sources of error in nutritional index studies of insects on artificial diet. J.Insect Physiol. 32: 193–198.

    Google Scholar 

  • Sowers, T., M. Bender, L. Labeyrie, D. Martinson, J. Jouzel, D. Raynaud, J.J. Pichon and Y.S. Korotkevich, 1993. A 135,000-year Vostok-specmap common temporal framework. Paleoceanography 8(6): 737–766.

    Google Scholar 

  • Tabashnik, B.E., 1997. Seeking the root of insect resistance to transgenic plants. Proceedings of the National Academy of Sciences of the USA 94(8): 3488–3490.

    PubMed  Google Scholar 

  • Tabashnik, B.E., Y.-B. Liu, T. Malvar, D.G. Heckel, L. Masson and J. Ferre, 1998. Insect resistance to Bacillus thuringiensis: Uniform or diverse? Philosophical Transactions of the Royal Society of London B Biological Sciences 353(1376): 1751–1756.

    Google Scholar 

  • Tabashnik, B.E., Y.B. Liu, N. Finson, L. Masson and D.G. Heckel, 1997a. One gene in diamondback moth confers resistance to four Bacillus thuringiensis toxins. Proceedings of the National Academy of Sciences of the USA 94(5): 1640–1644.

    PubMed  Google Scholar 

  • Tabashnik, B.E., Y.B. Liu, T. Malvar, D.G. Heckel, L. Masson, V. Ballester, F. Granero, J.L. Mensua and J. Ferre, 1997b. Global variation in the genetic and biochemical basis of diamondback moth resistance to Bacillus thuringiensis. Proceedings of the National Academy of Sciences of the USA 94(24): 12780–12785.

    PubMed  Google Scholar 

  • Tamez-Guerra, P., C. Garcia-Gutierrez, H. Medrano-Roldan, L.J. Galan-Wong and C.F. Sandoval-Coronado, 1999. Spray-dried microencapsulated Bacillus thuringiensis formulations for the control of Epilachna varivestis Mulsant. Southwestern Entomol. 24(1): 37–48.

    Google Scholar 

  • Tate, D.F., 1994. Determination of nitrogen in fertilizer by combustion: Collaborative study. J.AOAC International 77(4): 829–839.

    Google Scholar 

  • Traw, M.B., R.L. Lindroth and F.A. Bazzaz, 1996. Decline in gypsy moth (Lymantria dispar) performance in an elevated CO-2 atmosphere depends upon host plant species. Oecologia 108(1): 113–120.

    Google Scholar 

  • Trumble, J.T., 1998. IPM: Overcoming conflicts in adoption. Integrated Pest Management Reviews 3: 195–207.

    Google Scholar 

  • Waldbauer, G.P., 1968. The consumption and utilization of food by insects. Advances in Insect Physiology, 5: 229–288.

    Google Scholar 

  • Wier, A.T. and D.J. Boethel, 1995. Feeding, growth, and survival of soybean looper (Lepidoptera: Noctuidae) in response to nitrogen fertilization of nonnodulating soybean. Environ.Entomol. 24(2): 326–331.

    Google Scholar 

  • Wirth, M.C., A. Delecluse, B.A. Federici and W.E. Walton, 1998. Variable cross-resistance to Cry11B from Bacillus thuringiensis subsp. jegathesan in Culex quinquefasciatus (Diptera: Culicidae) resistant to single or multiple toxins of Bacillus thuringiensis subsp. israelensis. Appl.Environ.Microbiology 64(11): 4174–4179.

    Google Scholar 

  • Wirth, M.C. and G.P. Georghiou, 1997. Cross-resistance among CryIV toxins of Bacillus thuringiensis subsp. israelensis in Culex quinquefasciatus (Diptera: Culicidae). J.Econ.Entomol. 90(6): 1471–1477.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C.E. Coviella.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coviella, C., Trumble, J. Effect of elevated atmospheric carbon dioxide on the use of foliar application of Bacillus thuringiensis. BioControl 45, 325–336 (2000). https://doi.org/10.1023/A:1009947319662

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009947319662

Navigation