Skip to main content
Log in

Fluidic Microchannel Arrays for the Electrophoretic Separation and Detection of Bioanalytes using Electrochemiluminescence

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

In this paper a low cost, multi-channel separation and detection system is reported for use in fast, high throughput screening of bioanalytes. Applications include genetic engineering and drug discovery, particularly combinatorial chemistry. A prototype detection system is presented which is comprised of an array of 50 microchannels fabricated on 25 mm×75 mm glass substrates with planar, thin film metal electrodes for electrophoresis and electrochemiluminescence excitation. Fluidic interconnects to the microchannels via standard tubing provide quick and facile interfacing to external macro components, controllers and/or other microsystems. The fabrication process is readily scalable to higher density arrays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.D. Altria, Capillary Electrophoresis Guidebook: Principles, Operation and Application (Human Press Inc., Totowa, 1996).

    Google Scholar 

  2. P. Arquint, P. van der Wal, B. van der Schoot, and N. De Rooij, Proceedings of the International Solid-State Sensors and Actuators Conference—TRANSDUCERS Y95 (IEEE, New York, 1995), p. 263.

    Google Scholar 

  3. S. Clarson and J. Semlyen, Siloxane Polymers (Prentice-Hall, Englewood Cliffs, 1993).

    Google Scholar 

  4. J. Dicesare, B. Grossman, E. Katz, E. Picozza, R. Ragusa, and T. Woudenberg, Biotechniques 15, 152 (1993).

    Google Scholar 

  5. B. Haukanes and C. Kvam, Bio-technology 11, 60 (1993).

    Google Scholar 

  6. Y. Hsueh, S. Collins, and R. Smith, Sensors and Actuators B. 49, 1 (1998).

    Google Scholar 

  7. J. Lotters, W. Olthuis, and P. Veltink, P. Bergveld, Journal of Micromach. Microeng. 6, 52 (1996).

    Google Scholar 

  8. A. Morrissey, G. Kelly, and J. Alderman, SPIE 3224, 161 (1997).

    Google Scholar 

  9. M. Plunkett and J. Ellman, Scientific American 276, 68 (1997).

    Google Scholar 

  10. L. Rashkovetsky, Y. Lyubarskaya, F. Foret, D. Hughes, and B.L. Karger, Journal of Chromatography A 781, 197 (1997).

    Google Scholar 

  11. P.D. Rye, Bio-technology 14, 155 (1996).

    Google Scholar 

  12. G. Slater, T. Kist, H. Ren, and G. Drouin, Electrophoresis 19, 1525 (1998).

    Google Scholar 

  13. R. Smith, Y. Hsueh, S. Collins, J. Fiaccabrino, and M. Koudelka, SPIE 2978, 64 (1997).

    Google Scholar 

  14. M. Usui, M. Hikita, T. Watanabe, M. Amano, S. Sugawara, S. Hayashida, and S. Imamura, Proceedings of 1995. Japan International Electronic Manufacturing Technology Symposium (IEEE, New York, 1996), p. 260.

    Google Scholar 

  15. P. van der Wal, A. van den Berg, and N. de Rooij, Sensors and Actuators B 18, 200 (1994).

    Google Scholar 

  16. A. Woodley and R. Mathies, Proc. Natl. Acad. Sci. USA 91, 11348 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, K., Smith, R. & Collins, S. Fluidic Microchannel Arrays for the Electrophoretic Separation and Detection of Bioanalytes using Electrochemiluminescence. Biomedical Microdevices 2, 221–229 (2000). https://doi.org/10.1023/A:1009944832192

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009944832192

Navigation