Skip to main content
Log in

Comparison of Experimental and Numerical Investigation on Local and Global Heat Transfer in Turbulent Square Channel Flow with Roughness Elements in the Form of V-Shaped Broken Ribs

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

Local and global heat transfer in turbulent square channel flow with roughness elements in the form of V-shaped broken ribs attached at two opposite walls has been investigated experimentally and numerically for the first time. The results of a high resolution (0.063 by 0.063 mm2) ammonia absorption measurement technique allows a detailed description of the local heat (mass) transfer distribution. These results can be used as a reference to evaluate turbulence heat transfer models. The local heat transfer distributions are compared with numerical results of the well established Low Reynolds Number (LRN) k–ε model of Launder and Sharma and a new version of this model category for near wall flow by Lien and Leschziner. Both models predict qualitative correct local Nusselt number distributions for the rough and smooth walls. The Lien and Leschziner model gives better quantitative agreement with experiment than the Launder and Sharma model although still some weaknesses remain. For increased local accuracy the adoption of higher order turbulence models with special regard to near wall effects will be necessary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chandra, P.R. and Han, J.C., Pressure drop and mass transfer in two-pass ribbed channels. J. Thermophys. Heat Transfer 3 (1989) 315–320.

    Google Scholar 

  2. Chandra, P.R., Han, J.C. and Lau, S.C., Effect of rib angle on local heat/mass transfer distribution in a two-pass rib-roughened channel. J. Turbomach. 110 (1988) 233–241.

    Google Scholar 

  3. Chen, W.L., Lien, F.S. and Leschziner, M.A., Computational modelling of turbulent flow in turbomachine passage with low-Re two-equation models. In: Wagner, S. (ed.), Proceedings of 2nd European Computational Fluid Dynamics Conference, Stuttgart (1994).

  4. Eckert, E.R.G., Analogies to heat transfer processes. In: Eckert, E.R.G. and Goldstein, R.J. (eds), Measurements in Heat Transfer, Hemisphere Publishing, New York (1976) pp. 397–423.

    Google Scholar 

  5. Ekkad, S.V. and Han, J.C., Detailed heat transfer distributions in two-pass square channels with rib turbulators. Internat. J. Heat Mass Transfer 40 (1997) 2525–2537.

    Google Scholar 

  6. Franke, R. and Rodi, W., Calculation of vortex shedding past a square cylinder with various turbulence models. In: 8th Symposium on Turbulent Shear Flows, München, Vol. 2 (1991) pp. 20–1–1–20–1–6.

    Google Scholar 

  7. Gersten, K. and Herwig, H., Strömungsmechanik, Grundlagen der Impuls-, Wärme-und Stoffübertragung aus asymptotischer Sicht. Vieweg, Braunschweig (1992).

    Google Scholar 

  8. Han, J.C., Huang, J.J. and Lee, C.P., Augmented heat transfer in square channels with wedge-shaped and delta-shaped turbulence promoters. Enhanced Heat Transfer 1 (1993) 37–52.

    Google Scholar 

  9. Han, J.C., Ou, S., Park, J.S. and Lei, C.K., Augmented heat transfer in rectangular channels of narrow aspect ratios with rib turbulators. Internat. J. Heat Mass Transfer 32 (1989) 1619–1630.

    Google Scholar 

  10. Han, J.C. and Zhang, P., Pressure loss distribution in three-pass rectangular channels with rib turbulators. J. Turbomach. 111 (1989) 515–521.

    Google Scholar 

  11. Han, J.C. and Zhang, Y.M., High performance heat transfer ducts with parallel broken and V-shaped broken ribs. Internat. J. Heat Mass Transfer 35 (1992) 513–523.

    Google Scholar 

  12. Jakirlic, S., Hadzic, I. and Hanjalic, K.: Computation of non-equilibrium and separating flows at transitional and high Re numbers with a new low Re number second moment closure model. DGLR Bericht 'strömungen mit Ablösung' (1994) pp. 77–82.

  13. Kottke, V., Blenke, H. and Schmidt, K.G., Eine remissionsfotometrische Meßmethode zur Bestimmung örtlicher Stoffübergangskoeffizienten bei Zwangskonvektion in Luft. Sonderdruck aus Wärme-und Stoffübertragung/Thermo-and Fluid Dynamics 10 (1977) 9–21.

    Google Scholar 

  14. Kukreja, R.T., Lau, S.C. and McMillin, R.D., Local heat/mass transfer distribution in a square channel with full and V-shaped ribs. Internat. J. Heat Mass Transfer 36 (1993) 2013–2020.

    Google Scholar 

  15. Lau, S.C., McMillin, R.D. and Han, J.C., Heat transfer characteristics of turbulent flow in a square channel with angled discrete ribs. J. Turbomach. 113 (1991) 367–374.

    Google Scholar 

  16. Launder, B.E. and Sharma, B.I., Application of the energy dissipation model of turbulence to the calculation of flow near a spinning disc. Lett. Heat Mass Transfer 1 (1974) 131–138.

    Google Scholar 

  17. Lien, F.S. and Leschziner, M.A., Computational modelling of 3D turbulent flow in S-diffusor and transition ducts. In: Rodi, W. and Martelli, F. (eds), Engineering Turbulence Modelling and Measurements 2. Elsevier, Amsterdam (1993) pp. 217–228.

    Google Scholar 

  18. Lien, F.S. and Leschziner, M.A., Modelling the flow in a transition duct with a non-orthogonal FV procedure and low-Re turbulence-transport models. ASME Fluids Engineering Division 196 (1994) 93.

    Google Scholar 

  19. Lien, F.S. and Leschziner, M.A., Computational modelling of a transitional 3D turbine-cascade flow using a modified low Re k-ε model and a multi-block scheme. ASME Paper 95-CTP-80 (1995).

  20. Mitzushima, T. and Nakajima, M., Simultaneous heat and mass transfer. Chem. Engrg. Japan 15 (1951) 30–34.

    Google Scholar 

  21. Neumann, H., Experimentelle Untersuchungen von hydrodynamischen und thermischen Anlaufströmungen mit periodisch angeordneten Wirbelerzeugern. Dissertation Ruhr-Universität Bochum (1997).

  22. Rodi, W. and Mansour, N.N., Low Reynolds number k-epsilon modeling with the aid of direct simulation data. J. Fluid Mech. 250 (1993) 509–530.

    Google Scholar 

  23. Savill, A.M., Further progress in the turbulence modelling of by-pass transition. In: Rodi, W. and Martelli, F. (eds), Engineering Turbulence Modelling and Measurements 2. Elsevier, Amsterdam (1993) pp. 583–592.

    Google Scholar 

  24. Schulz, K. and Fiebig, M., Accurate inexpensive local heat/mass transfer determination by digital image processing applied to the ammonia absorption method. In: Celata, G.P. et al. (eds), 2nd European Thermal-Sciences and 14th UIT National Heat Transfer Conference, Vol. 2, Rome (1996) pp. 1079–1086.

  25. Vogt, C., Umrüstung eines Windkanals und experimentell unterstützte Untersuchung von periodisch angeordneten, technischen Rauhigkeiten zur Wärmeübergangserhöhung. Konstruktiver Entwurf Nr. 95–5, Ruhr-Universität Bochum (1995).

  26. Weber, D.: Experimente zu selbsterregt instationären Spaltströmungen mit Wirbelerzeugern und Wärmeübertragung. Dissertation Ruhr-Universität Bochum (1995).

  27. Zhang, N., Chiou, J., Fann, S. and Yang, W.J., Local heat transfer distribution in a rotating serpentine rib-roughened flow passage. J. Heat Transfer 115 (1993) 560–567.

    Google Scholar 

  28. Zhang, Y.M., Gu, W.Z. and Han, J.C.: Heat transfer and friction in rectangular channels with ribbed or ribbed-grooved walls. J. Heat Transfer 116 (1994) 58–65.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bergmann, J., Fiebig, M. Comparison of Experimental and Numerical Investigation on Local and Global Heat Transfer in Turbulent Square Channel Flow with Roughness Elements in the Form of V-Shaped Broken Ribs. Flow, Turbulence and Combustion 62, 163–181 (1999). https://doi.org/10.1023/A:1009943429753

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009943429753

Navigation