Skip to main content

Effects of removal of riparian vegetation on algae and heterotrophs in a Mediterranean stream

Abstract

The effect of removal of a riparian strip on aquaticautotrophic (algae) and heterotrophic (bacteria,macroinvertebrates) organisms was monitored in aMediterranean stream during the canopy growing period.Community composition, biomass and metabolicactivities were compared with those recorded during apre-riparian removal period and in a forested stretchdownstream. Higher irradiance was associated with Cladophora increase in the logged section. Algalbiomass increased up to ten times, and productivitywas up to four times higher than in the pre-removalperiod and the forested section. Bacterialcommunities showed higher ectoenzymatic activities(β-glucosidase, β-xylosidase) in thelogged section than in forested conditions. Moreoverthe coincidence between the maxima ofβ-glucosidase and chlorophyll-a suggeststhat bacterial activity was enhanced by the higheravailability of high-quality algal material. Themacroinvertebrate community had higher density andbiomass in the logged section than in the forestedsection and in the pre-removal period. Scrapers andfilterers become dominant after riparian removal,while shredders, predators and collectors did not showsignificant changes either between sites or periods.Responses of environmental variables and bioticcommunities indicate that the changes occurring in thestream due to riparian removal could be consideredbottom-up controlled, as increased illumination wasthe main mechanism responsible.

This is a preview of subscription content, access via your institution.

References

  • Allan, J. D., 1995. Stream Ecology. Structure and Function of Running Waters. Chapman & Hall.

  • American Public Health Association (APHA), 1989. Standard Methods for the Examination of Water and Wastewater, 17th edition. Washington, 1134 pp.

  • Behmer, D. J. & C. P. Hawkins, 1989. Effects of overhead canopy on macroinvertebrate production in a Utah stream. Freshwater Biology 16: 287–300.

    Google Scholar 

  • Bott, T. L., J. T. Brock, C. S. Dunn, R. J. Naiman, R. W. Ovink & R. C. Petersen, 1985. Benthic community metabolism in four temperate stream systems: An interbiome comparison and evaluation of the river continuum concept. Hydrobiologia 123:3–45.

    Google Scholar 

  • Cummins, K. W., M. A. Wilbach, D.M. Gates, J. B. Perry& W. B. Taliaferro, 1989. Shredders and riparian vegetation. BioScience 39: 24–30.

    Google Scholar 

  • Décamps, H. & R. J. Naiman, 1989. L’écologie des fleuves. La Recherche 208: 310–319.

    Google Scholar 

  • Feminella, J. W., M. E. Power & V. H. Resh, 1989. Periphyton response to invertebrate grazing and riparian canopy in three northern California coastal streams. Freshwater Biology 22:445–457.

    Google Scholar 

  • Fisher, S. G., 1995. Stream ecosystems of theWestern United States. In: C. E. Cushing, K. W. Cummins and G. W. Minshall (eds), River and Stream Ecosystems. pp. 61–88. Elsevier.

  • Graham, J. M., M. T. Auer, R. P. Canale & J. P. Hoffman, 1982. Ecological studies and mathematical modelling of Cladophora in Lake Huron. 4. Photosynthesis and respiration as functions of light and temperature. Journal Great Lakes Research 8: 100–111.

    Google Scholar 

  • Gregory, S. V., F. J. Swanson, W. A. McKee & K. W. Cummins, 1991. An ecosystem perspective of riparian zones. BioScience 41: 540–551.

    Google Scholar 

  • Guasch, H. & S. Sabater, 1994. Primary production of epilithic communities in undisturbed Mediterranean streams. Verhandlungen Internationale Vereinigung Limnologie 25: 1761–1764.

    Google Scholar 

  • Guasch, H.& S. Sabater, 1995. Seasonal variations in photosynthesis–irradiance responses by biofilms in Mediterranean streams. Journal of Phycology 31: 727–735.

    Google Scholar 

  • Haack, S. K., T. Burton & K. Ulrich, 1988. Effects of whole-tree harvest on epilithic bacterial populations in headwater streams. Microbial Ecology 16: 165–181.

    Google Scholar 

  • Hansmann, E. W. & H. K. Phinney, 1973. Effects of logging on periphyton in coastal streams of Oregon. Ecology 54: 194–199.

    Google Scholar 

  • Hawkins, C. P. & J. R. Sedell, 1981. Longitudinal and seasonal changes in functional organization of macroinvertebrate communities in four Oregon streams. Ecology 62: 387–397.

    Google Scholar 

  • Hawkins, C. P., M. L. Murphy & N. H. Anderson, 1982. Effects of canopy, substrate composition, and gradient on the structure of macroinvertebrate communities in Cascade Range streams of Oregon. Ecology 63: 1840–1856.

    Google Scholar 

  • Hill, W. R. & A. W. Knight, 1988. Nutrient and light limitation of algae in two northern California streams. Journal of Phycology 24: 125–132.

    Google Scholar 

  • Hudson, J. J. & J. C. Roff, 1992. Bacterial productivity in forested and open streams in Southern Ontario. Canadian Journal of Fisheries and Aquatic Sciences 49: 2412–2422.

    Google Scholar 

  • Hynes, H. B. N., 1970. The Ecology of Running Waters. Univ. Toronto Press.

  • Jeffrey. S. W. & G. F. Humphrey, 1975. New spectrophotometric equations for determining chlorophylls a, b, and c in higher plants, algae and natural phytoplankton. Biochemie Physiologie Pflanzen 167: 191–194.

    Google Scholar 

  • Jones, S. E. & M. A. Lock, 1993. Seasonal determinations of extracellular hydrolytic activities in heterotrophic and mixed heterotrophic/autotrophic biofilms from two contrasting rivers. Hydrobiologia 257: 1–16.

    Google Scholar 

  • Leland, H. V., 1995. Distribution of phytobenthos in the Yakima River basin, Washington, in relation to geology, land use, and other environmental factors. Canadian Journal of Fisheries and Aquatic Sciences 52: 1108–1129.

    Google Scholar 

  • Lohman, K.& J. C. Priscu, 1992. Physiological indicators of nutrient deficiency in Cladophora(Chlorophyta) in the Clark Fork of the Columbia River, Montana. Journal of Phycology 28: 443–448.

    Google Scholar 

  • Lorenz, R. C. & C. E. Herdendorf, 1982. Growth dynamics of Cladophora glomeratain western Lake Erie in relation to some environmental factors. Journal of Great Lakes Research 8: 42–53.

    Google Scholar 

  • Lowe, R. L., S. W. Golladay & J. R. Webster, 1986. Periphyton response to nutrient manipulation in streams draining clearcut and forested watersheds. Journal of North American Benthological Society 5(3): 221–229.

    Google Scholar 

  • Marti, E.& F. Sabater, 1996. High variability in temporal and spatial nutrient retention in Mediterranean streams. Ecology 77: 854–869.

    Google Scholar 

  • Merritt, R. W. & K. W. Cummins, 1979. An Introduction to the Aquatic Insects of North America. Kendall/Hunt Publishing Company.

  • Moore, J.W., 1975. The role of algae in the diet of Asellus aquaticus L. and Gammarus pulexL. Journal of Animal. Ecology 44:719–730.

    Google Scholar 

  • Muñoz, I. & N. Prat, 1994. Macroinvertebrate community in the lower Ebro river (NE Spain). Hydrobiologia 286: 65–78.

    Google Scholar 

  • Naiman, R. J., 1983. The annual pattern and spatial distribution of aquatic oxygen metabolism in boreal forest watersheds. Ecological Monographs 53: 73–94.

    Google Scholar 

  • Naiman, R. J. & J. R. Sedell, 1979. Characterization of particulate organic matter transported by some cascade mountain stream. Journal of Fisheries Research Board of Canada 36: 17–31.

    Google Scholar 

  • Naiman, R. J., H. Décamps, J. Pastor & C. A. Johnston, 1988. The potential importance of boundaries to fluvial ecosystems. Journal of North American Benthological Society 21: 804–811.

    Google Scholar 

  • Newbold, J. D., D. C. Erman & K. B. Roby, 1980. Effects of logging on macroinvertebrates in streams with and without buffer strips. Journal of Fisheries Research Board of Canada 37: 1076–1085.

    Google Scholar 

  • Newbold, J. D., J. W. Elwood, R. V. O’Neill & W. van Winkle, 1981. Measuring nutrient spiralling in streams. Environmental Sciences Division 1755: 860–863.

    Google Scholar 

  • Perlin, J., 1989. A Forest Journey. Harvard Univ. Press, Cambridge. 445 pp.

    Google Scholar 

  • Peterson, B. J., L. Deegan, J. Helfrich, J. E. Hobbie, M. Hullar & B. Moller, 1993. Biological responses of a tundra river to fertilization. Ecology 74(3): 653–672.

    Google Scholar 

  • Pinay, G., A. Fabre, P. Vervier & F. Gazelle, 1992. Control of C, N, P distribution in soils of riparian forest. Landscape Ecology 6:121–132.

    Google Scholar 

  • Rosemond, A. D., 1993. Interactions among irradiance, nutrients, and herbivores constrain a stream algal community. Oecologia 94: 585–594.

    Google Scholar 

  • Ross, H. H., 1963. Stream communities and terrestrial biomes. Archiv für Hydrobiologie 59: 235–242.

    Google Scholar 

  • Sabater, S. & A. Romaní, 1996. Metabolic changes associated with biofilm formation in an undisturbed Mediterranean stream. Hydrobiologia 335: 107–113.

    Google Scholar 

  • Sabater, S.& F. Sabater, 1992. Longitudinal changes of benthic algal biomass in a mediterranean river during two high production periods. Archiv für Hydrobiologie 124: 475–487.

    Google Scholar 

  • Somville M., 1984. Measurement and study of substrate specificity of exoglucosidase activity in eutrophic water. Applied and Environmental Microbiology 48: 1181–1185.

    Google Scholar 

  • Tait, C. K., J. L. Li, G. A. Lamberti, T. N. Pearsons & H. W. Li, 1994. Relationships between riparian cover and the communitiy structure of high desert streams. Journal of North American Benthological Society 13: 45–56.

    Google Scholar 

  • Towns, D. R., 1981. Effects of artificial shading on periphyton and invertebrates in a New Zealand stream. New Zealand Journal of Marine and Freshwater Research 15: 185–192.

    Google Scholar 

  • Triska, F. J., J. R. Sedell & S. V. Gregory, 1982. Coniferous forest streams. In: R. L. Edmonds (ed.), Analysis of Coniferous Forest Ecosystems in theWestern United States. pp. 292–332. Hutchinson Ross Publ.

  • Triska, F. J., V. C. Kennedy, R. J. Avanzino & B. N. Reilly, 1983. Effect of simulated canopy cover on regulation of nitrate uptake and primary production by natural periphyton assemblages. In: T. D. Fontaine & S.M. Bartell (eds), Dynamics of Lotic Ecosystems. pp. 129–159. Ann Arbor Science Publishers.

  • Van Gaans, P. F. M., 1989. WATEQX–A restructured, generalized and extended FORTRAN77 computer code and database format for theWATEQaqueous chemical model for element speciation and mineral saturation, for use on personal computers or mainframes. Computers and Geosciences 15: 843–887.

    Google Scholar 

  • Vannote, R. L., G. W. Minshall, K. W. Cummins, J. R. Sedell & C. E. Cushing, 1980. The river continuum concept. Can. J. Fish. Aquat. Sci. 37

  • Wallace, J. B. & M. E. Gurtz, 1986. Response of Baetismayflies (Ephemeroptera) to catchment logging. The American Midland Naturalist 115: 25–41.

    Google Scholar 

  • Ward, J. V., 1984. Ecological perspectives in the management of aquatic insects habitat. In: V. H. Resh & R. M. Rosenberg (eds), The Ecology of Aquatic Insects. pp. 558–577. Praeger.

  • Ward, J. V., 1992. Aquatic Insect Ecology. 1. Biology and Habitat. John Wiley & Sons, Inc.

  • Webster J. R. & J. B. Waide, 1982. Effects of forest clearcutting on leaf breakdown in a southern Appalachian stream. Freshwater Biology 12: 331–344.

    Google Scholar 

  • Whitton, B. A., 1970. Biology of Cladophorain freshwaters. Water Research 4: 457–476.

    Google Scholar 

  • Winer, B. J., 1971. Statistical Principles in Experimental Design. McGraw Hill. 907 pp.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sabater, S., Butturini, A., Muñoz, I. et al. Effects of removal of riparian vegetation on algae and heterotrophs in a Mediterranean stream. Journal of Aquatic Ecosystem Stress and Recovery 6, 129–140 (1997). https://doi.org/10.1023/A:1009938511352

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009938511352

  • riparian removal
  • Mediterranean
  • algae
  • bacteria
  • ectoenzymatic activities
  • macroinvertebrates
  • biomass
  • productivity