Skip to main content
Log in

Quantized Heisenberg Space

  • Published:
Algebras and Representation Theory Aims and scope Submit manuscript

Abstract

We investigate the algebra F q (N) introduced by Faddeev, Reshetikhin and Takhadjian. In the case where q is a primitive root of unity, the degree, the center, and the set of irreducible representations are found. The Poisson structure is determined and the De Concini–Kac–Procesi Conjecture is proved for this case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. De Concini, C. and Procesi, C.: Quantum groups, In: D-modules, Representation Theory, and Quantum Groups (Venice 1992), Lecture Notes in Math. 1565, Springer, Berlin, 1993, pp. 31–140.

    Google Scholar 

  2. De Concini, C., Kac, V. G. and Procesi, C.: Quantum coadjoint action, J. Amer. Math. Soc. 5 (1992), 151–189.

    Google Scholar 

  3. Faddeev, L., Reshetikhin, N. and Takhtajan, L.: Quantization of Lie groups and Lie algebras, In: Algebraic Analysis, Academic Press, New York, 1988, pp. 129–140.

    Google Scholar 

  4. Hayashi, T.: Q-Analogues of Clifford and Weyl algebras – spin and oscillator representations of quantum enveloping algebras, Comm. Math. Phys. 127(1990), 129–144.

    Google Scholar 

  5. Jakobsen, H. P. and Zhang, H. C.: The center of the quantized matrix algebra, J. Algebra 196 (1997), 458–476.

    Google Scholar 

  6. Jakobsen, H. P. and Zhang, H. C.: The center of the Dipper–Donkin quantized matrix algebra, Beiträge Algebra Geom. 38(1997), 221–231.

    Google Scholar 

  7. Korogodsky, L. I. and Vaksman, L. L.: Quantum G-spaces and Heisenberg algebra, In: Quantum Groups (Leningrad 1990), Lecture Notes in Math. 1510, Springer, Berlin, 1992, pp. 56–66.

    Google Scholar 

  8. Lusztig, G.: Quantum group at root of 1, Geom. Ded. 35(1990), 89–114.

    Google Scholar 

  9. Manin, Yu. I.: Quantum Groups and Non-commutative Geometry, Centre de Recherches, Montreal, 1988.

    Google Scholar 

  10. McConnell, J. C. and Robson, J.C.: Noncommutative Noetherian Rings, Wiley-Interscience, New York, 1987.

    Google Scholar 

  11. Oh, S.: Primitive ideals of the coordinate ring of quantum symplectic space, J. Algebra 174 (1995), 531–552.

    Google Scholar 

  12. Parshall, B. and Wang, J.: Quantum Linear Groups, Mem. Amer. Math. Soc., Amer.Math. Soc., Providence, 1992.

  13. Smith, S. P.: Quantum groups: An introduction and survey for ring theorists, In: Noncommutative Rings (Berkeley, CA, 1989), Math. Sci. Res. Inst. Publ. 24, Springer, New York, 1992, pp. 131–178.

    Google Scholar 

  14. Takeuchi M.: Quantum orthogonal and symplectic groups and their embedding into quantum GL, Proc. Japan Acad. Ser. A Math. Sci. 65(1989), 55–58.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jakobsen, H.P., Zhang, H. Quantized Heisenberg Space. Algebras and Representation Theory 3, 151–174 (2000). https://doi.org/10.1023/A:1009937429349

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009937429349

Navigation