Skip to main content
Log in

Turbulent Air-Flow Measurement with the Aid of 3-D Particle Tracking Velocimetry in a Curved Square Bend

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

A three-dimensional particle tracking velocimeter (3-D PTV) was applied to air-flow measurement in a strongly curved U-bend of a square cross-section. He-filled neutral-buoyant soap bubbles were employed as a flow tracer, and turbulent statistics including all Reynolds stress components were measured. The pressure-induced secondary flow, of which magnitude reached about 30% of the bulk mean velocity, was observed. The present experimental result is mostly in good agreement with the LDA data at higher bulk-mean Reynolds number taken by Chang et al. The effect of the secondary flow on the production mechanism of turbulent kinetic energy as well as on the distributions of the invariants of stress anisotropy tensor was examined in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adrian, R.J., Particle-imaging techniques for experimental fluid mechanics. Ann. Rev. Fluid Mech. 23 (1991) 261-304.

    Article  ADS  Google Scholar 

  2. Adachi, T., Nishino, K. and Torii, K., Digital PTV measurements of a separated air flow behind a backward-facing step. J. Flow Vis. Image Proc. 1 (1993) 317-335.

    Google Scholar 

  3. Azzola, J., Humphrey, J.A.C., Iacovides, H. and Launder, B.E., Developing turbulent flow in a U-bend of circular cross-section: Measurement and computation. ASME J. Fluid Engrg. 108 (1986) 214-221.

    Google Scholar 

  4. ANSI/ASME PTC 19.1-1985. Measurement Uncertainty, Supplement on Instruments and Apparatus, Part 1 (1987).

  5. Brundrett, E. and Baines, W.D., The production and diffusion of vorticity in a square duct. J. Fluid Mech. 19 (1964) 375-394.

    Article  MATH  ADS  Google Scholar 

  6. Chang, S.M., Humphrey, J.A. and Modavi, A., Turbulent flow in a strongly curved U-bend and downstream tangent of square cross-sections. Physico Hydrodyn. 4 (1983) 243-269.

    Google Scholar 

  7. Choi, Y.D., Moon, C. and Yang, S.H., Measurement of turbulent flow characteristics of square duct with a 180 bend by hot-wire anemometers. In: Rodi, W. and Ganić, E.N. (eds), Proceedings International Symposium on Engineering Turbulence Modelling and Measurements, Dubrovnik, Yugoslavia. Elsevier, New York (1990) pp. 429-438.

    Google Scholar 

  8. Clift, R., Grace, J.R. and Weber, M.E., Bubbles, Drops and Particles. Academic Press, New York (1978).

    Google Scholar 

  9. Demuren, A.O. and Rodi, W., Calculation of turbulence-driven secondary motion in non-circular ducts. J. Fluid Mech. 140 (1984) 189-222.

    Article  MATH  ADS  Google Scholar 

  10. Fujita, H., Hirota, M., Yokosawa, H. and Iwata, S., Measurement of turbulent flow in a square duct with roughened walls on two opposite sides. Internat. J. Heat Fluid Flow 10 (1989) 125-130.

    Article  Google Scholar 

  11. Gavrilakis, S., Numerical simulation of low-Reynolds-number turbulent flow through a straight square duct. J. Fluid Mech. 244 (1992) 101-129.

    Article  ADS  Google Scholar 

  12. Guezennec, Y.G., Brodkey, R.S., Trigui, N. and Kent, J.C., Algorithms for fully automated three-dimensional particle tracking velocimetry. Exp. Fluids 17 (1994) 209-219.

    Article  Google Scholar 

  13. Humphrey, J.A.C., Whitelaw, J.H. and Yee, G., Turbulent flow in a square duct with strong curvature. J. Fluid Mech. 103 (1981) 443-463.

    Article  ADS  Google Scholar 

  14. Huser, A. and Biringen, S., Direct numerical simulation of turbulent flow in a square duct. J. Fluid Mech. 257 (1993) 65-95.

    Article  MATH  ADS  Google Scholar 

  15. Huser, A., Biringen, S. and Hatay, F.F., Direct simulation of turbulent flow in a square duct: Reynolds-stress budgets. Phys. Fluids 6 (1994) 3144-3152.

    Article  MATH  ADS  Google Scholar 

  16. Iacovides, H., Launder, B.E., Loizou, P.A. and Zhao, H.H., Turbulent boundary-layer development around a square-sectioned U-bend: Measurements and computation. ASME J. Fluid Engrg. 112 (1990) 409-415.

    Article  Google Scholar 

  17. Ito, H., Friction factors for turbulent flow in curved pipes. ASME J. Basic Engrg. 81 (1959) 123-134.

    Google Scholar 

  18. Kasagi, N. and Nishino, K., Probing turbulence with three-dimensional particle-tracking velocimetry. Exp. Thermal Fluid Sci. 4 (1991) 601-612.

    Article  Google Scholar 

  19. Kasagi, N. and Sata, Y., Recent developments in three-dimensional particle tracking velocimetry. In: Tanida, Y. and Miyashiro, H. (eds), Flow Visualization VI. Springer-Verlag, Berlin (1992) pp. 832-837.

    Google Scholar 

  20. Kasagi, N. and Matsunaga, A., Three-dimensional particle-tracking velocimetry measurement of turbulence statistics and energy budget in a backward-facing step flow. Internat. J. Heat Fluid Flow 16 (1995) 477-485.

    Article  Google Scholar 

  21. Kato, H., Ninisho, K. and Torii, K., Application of a 3-D PTV to the measurement of turbulent air flows. In: Tanida, Y. and Miyashiro, H. (eds), Flow Visualization VI. Springer-Verlag, Berlin (1992) pp. 797-801.

    Google Scholar 

  22. Kent, J.C. and Eaton, A.R., Stereo photography of neutral density He-filled bubbles for 3-D fluid motion studies in an engine cylinder. Appl. Optics 21 (1982) 904-912.

    Article  ADS  Google Scholar 

  23. Lumely, J.L., Computational modeling of turbulent flows. Adv. Appl. Mech. 18 (1978) 123-176.

    Google Scholar 

  24. Maas, H.G., Gruen, A. and Papantoniou, D.A., Particle tracking velocimetry in three-dimensional flows: Part I. Photogrammetric determination of particle coordinates. Exp. Fluids 15 (1993) 133-146.

    Article  Google Scholar 

  25. Malik, N.A., Dracos, Th. and Papantoniou, D.A., Particle tracking velocimetry in three-dimensional flows: Part II. Particle tracking. Exp. Fluids 15 (1993) 279-294.

    Article  Google Scholar 

  26. Mei, R., Velocity fidelity of flow tracer particles. Exp. Fluids 22 (1996) 1-13.

    Article  Google Scholar 

  27. Melling, A. and Whitelaw, J.H., Turbulent flow in a rectangular duct. J. Fluid Mech. 78 (1976) 289-315.

    Article  ADS  Google Scholar 

  28. Melling, A., Tracer particles and seeding for particle image velocimetry. Meas. Sci. Tech. 8 (1997) 1406-1416.

    Article  ADS  Google Scholar 

  29. Ninomiya, N. and Kasagi, N., Measurement of the Reynolds stress budgets in an axisymmetric free jet with the aid of three-dimensional particle tracking velocimetry. In: Proceedings 9th Symposium on Turbulence Shear Flows, Kyoto (1993) pp. 6.1.1-6.1.6.

  30. Nishino, K., Kasagi, N. and Hirata, M., Three-dimensional particle tracking velocimety based on automated digital image processing. ASME J. Fluid Engrg. 111 (1989) 384-391.

    Article  Google Scholar 

  31. K. Nishino, K., and Kasagi, N., Turbulence statistics measurement in a two-dimensional channel flow using a three-dimensional particle tracking velocimetry. In: Proceedings 7th Symposium on Turbulence Shear Flows, Stanford (1989) pp. 22.1.1-22.1.6.

  32. Oakley, T.R., Loth, E. and Adrian, R.J., Two-phase cinematic PIV method for bubbly flows. ASME J. Fluid Engrg. 119 (1997) 707-712.

    Google Scholar 

  33. Perkins, H.J., The formation of streamwise vorticity in turbulent flows. J. Fluid Mech. 44 (1970) 721-740.

    Article  MATH  ADS  Google Scholar 

  34. Sata, Y. and Kasagi, N., Improvement toward high measurement resolution in three-dimensional particle tracking velocimetry. In: Tanida, Y. and Miyashiro, H. (eds), Flow Visualization VI. Springer-Verlag, Berlin (1992) pp. 792-796.

    Google Scholar 

  35. Sata, Y., Sato, K., Kasagi, N. and Takamura, N., Application of the three-dimensional particle tracking velocimeter to a turbulent air flow. In: Nakayama, Y. and Tanahashi, T. (eds), Proceedings 3rd Asian Symposium on Visualization. Springer-Verlag, Berlin (1994) pp. 705-710; also Trans JSME, Ser. B. 60–571 (1994) 865–871 [in Japanese].

    Google Scholar 

  36. Sata, Y. and Kasagi, N., Simultaneous measurement of three-dimensional object motion/deformation and circumambient fluid flow. In: Crowder, J. (ed.), Flow Visualization VII. Springer-Verlag, Berlin (1995) pp. 721-726.

    Google Scholar 

  37. Sudo, K., Sumida, M. and Hibara, H., Experimental investigation on turbulent flow in a circular-sectioned 90-degree bend. Exp. Fluids 25 (1998) 42-49.

    Article  Google Scholar 

  38. Suzuki, Y. and Kasagi, N., On the turbulent drag reduction mechanism above a riblet surface. AIAA J. 32 (1994) 1781-1790.

    Article  ADS  Google Scholar 

  39. Suzuki, Y., Ikenoya, M. and Kasagi, N., Simultaneous measurement of fluid and dispersed phases in a particle-laden turbulent channel flow with the aid of 3-D particle tracking velocimetry. Exp. Fluids 27 (2000) in press.

  40. Taylor, A.M.K.P., Whitelaw, J.H. and Yianneskis, M., Curved ducts with strong secondary motion: Velocity measurements of developing laminar and turbulent flow. ASME J. Fluid Engrg. 104 (1982) 350-359.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suzuki, Y., Kasagi, N. Turbulent Air-Flow Measurement with the Aid of 3-D Particle Tracking Velocimetry in a Curved Square Bend. Flow, Turbulence and Combustion 63, 415–442 (2000). https://doi.org/10.1023/A:1009936304219

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009936304219

Navigation