Skip to main content
Log in

Estimating the Density of the Residuals in Autoregressive Models

  • Published:
Statistical Inference for Stochastic Processes Aims and scope Submit manuscript

Abstract

We consider a (nonlinear) autoregressive model with unknown parameters (vector θ). The aim is to estimate the density of the residuals by a kernel estimator. Since the residuals are not observed, the usual procedure for estimating the density of the residuals is the following: first, compute an estimator \(\hat \theta \) for θ; second, calculate the residuals by use of the estimated model; and third, calculate the kernel density estimator by use of these residuals. We show that the resulting density estimator is strong consistent at the best possible convergence rate. Moreover, we prove asymptotic normality of the estimator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ango Nze, P. and Rios, R.: Estimation de la fonction de densité d'un processus faiblement dépendant: les cas absolument régulier et fortement mélangeant, C.R. Acad. Sci. Paris, Série I 320(1995), 1259–1262.

    MATH  MathSciNet  Google Scholar 

  • Bosq, D.: Nonparametric Statistics for Stochastic Processes, Lecture Notes in Statistics, Vol. 110, Springer-Verlag, New York, 1996.

    Google Scholar 

  • Doukhan, P.: Mixing - Properties and Examples, Springer-Verlag, New York, 1994.

    MATH  Google Scholar 

  • Földes, A. and Revesz, P.: A general method for density estimation, Studia Sc. Math. Hungarica 9(1974), 81–92.

    Google Scholar 

  • Hall, P. and Heyde, C. C.: Martingale Limit Theory and Its Applications, Academic Press, 1980.

  • Klimko, L. A. and Nelson, P. I.: On conditional least squares estimation for stochastic processes, Ann. Statist. 6(1978), 629–642.

    MATH  MathSciNet  Google Scholar 

  • Kreiß, J.-P.: Estimation of the distribution function of noise in stationary processes, Metrika 38(1991), 285–297.

    MATH  MathSciNet  Google Scholar 

  • Liebscher, E.: Kernel estimators for probability densities with discontinuities, Statistics 21(1990), 185–196.

    MATH  MathSciNet  Google Scholar 

  • Liebscher, E.: Strong convergence of sums of α-mixing random variables with applications to density estimation, Stoch. Proc. Appl. 65(1996), 69–80.

    Article  MATH  MathSciNet  Google Scholar 

  • Liebscher, E.: Asymptotic normality of nonparametric estimators under α-mixing condition, Stat. Probab. Lett. to appear (1998a).

  • Liebscher, E.: Estimation of the density and the regression function under mixing conditions, Statistics & Decisions, to appear (1998b).

  • Masry, E. and Tjøstheim, D.: Nonparametric estimation and identification of nonlinear ARCH time series, Econometric Theory 11(1995), 258–289.

    Article  MathSciNet  Google Scholar 

  • Mokkadem, A.: Study of risks of kernel estimators, Teoriya veroyatnostei i eyo primeneniya 35(1990), 531–538.

    MATH  MathSciNet  Google Scholar 

  • Parzen, E.: On estimation of a probability density function and mode, Ann. Math. Statist. 33(1962), 1065–1076.

    MATH  MathSciNet  Google Scholar 

  • Rio, E.: The functional law of the iterated logarithm for stationary strongly mixing sequences, Ann. Probab. 23(1995), 1188–1203.

    MATH  MathSciNet  Google Scholar 

  • Stute, W.: A law of the logarithm for kernel density estimators, Ann. Probab. 10(1982), 414–422.

    MATH  MathSciNet  Google Scholar 

  • Tong, H.: Non-linear Time Series: A Dynamical Approach, Oxford University Press, 1990.

  • Tjøstheim, D.: Estimation in nonlinear time series models, Stoch. Proc. Appl. 21(1986), 251–273.

    Article  MATH  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liebscher, E. Estimating the Density of the Residuals in Autoregressive Models. Statistical Inference for Stochastic Processes 2, 105–117 (1999). https://doi.org/10.1023/A:1009924821271

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009924821271

Navigation