Skip to main content

Pesticide toxicity endpoints in aquatic ecosystems

Abstract

To adequately protect aquatic ecosystems from impactby anthropogenic perturbations it is necessary todistinguish what is safe from what is not. Thisreview examines approaches to this problem in relationto primary and secondary effects of pesticides.Understanding nutrient – plankton and plankton –plankton interrelationships on both spatial andtemporal scales is important if secondary or indirecteffects are to be assessed. Before defining ormeasuring a toxicity endpoint, consideration must begiven to whether to use single species or multispeciestests. Each has its strengths and weaknesses and isreviewed. In single species testing, toxicityendpoints can be more clearly defined butextrapolation of effects to an ecosystem is moredifficult than with multispecies testing and can oftenlead to incorrect conclusions. Interpretation ofmultispecies testing results are challenging andnumerical analysis techniques including methods whoseobjectives are inference, classification andordination are required. Conceptual and fuzzy logicmodelling techniques promise a solution to theinterpretation of multispecies tests.

This is a preview of subscription content, access via your institution.

References

  • Anderson-Carnahan, L., 1994. Development of methods for culturing and conducting aquatic toxicity tests with the Australian cladoceran Moina australiensis. Water Resources Series: No 13. CSIRO Division of Water Resources, Griffith, Australia, 56 pp.

    Google Scholar 

  • Arumugam, P.T. & M.C. Geddes, 1986. An enclosure for experimental field studies with fish and Zooplankton communities. Hydrobiologia 135:215–221.

    Google Scholar 

  • Asciotti, F.A., E. Beltrami & T.O. Carroll, 1993. Is there chaos in plankton dynamics? J. Plankton Res. 15: 603–617.

    Google Scholar 

  • Barron, M.G. & K.B. Woodburn, 1995. Ecotoxicology of chlorpyrifos Rev. Environ. Toxicol. 144: 1–93.

    Google Scholar 

  • Bascietto, J., D. Hinckley, J. Plafkin & M. Slimak, 1990. Ecotoxicity and ecological risk assessment. Environ. Sci. Technol. 24: 10–14.

    Google Scholar 

  • Beals, E., 1984. Bray-Curtis ordination: An effective strategy for analysis for multivariate ecological data. Advan. Ecol. Res. 14: 1–55.

    Google Scholar 

  • Beaver, J.R. & K.E. Havens, 1996. Seasonal and spatial variation in Zooplankton community structure and their relation to possible controlling variables in Lake Okeechobee. Freshwat. Biol. 36: 45–56.

    Google Scholar 

  • Belbin, L, 1993. PATN Technical reference manual. CSIRO Division of Wildlife and Ecology, Canberra, 235 pp.

    Google Scholar 

  • Beyers, R. J. & H.T. Odum, 1993. Ecological microcosms. Springer-Verlag, New York, pp. 557.

    Google Scholar 

  • Bierman, V.J. Jr., 1976. Mathematical model of the selective enhancement of blue-green algae by nutrient enrichment. In: R. Canale (ed.), Modeling Biochemical Processes in Aquatic Ecosystems, Ann Arbor Science: 1–30.

  • Billington, N., 1991. A comparison of three methods of measuring phytoplankton biomass on a daily and seasonal basis. Hydrobiologia 226:1–15.

    Google Scholar 

  • Blum, DJ. & R.E. Speece, 1990. Determining chemical toxicity to aquatic species. Environ. Sci. Technol. 24: 284–293.

    Google Scholar 

  • Boon, P.I. & R.J. Shiel, 1990. Grazing on bacteria by Zooplankton in Australian billabongs. Aust. J. Mar. Freshwater Res. 41: 247–257.

    Google Scholar 

  • Boreham, S. & P. Birch, 1987. The use of indicator organisms to assess aquatic pollution following a motorway insecticide spill. Sci. Total Environ. 59: 477–480.

    Google Scholar 

  • Bowmer, K.H., 1982a. Adsorption characteristics of seston in irrigation water: implications for use of aquatic herbicides. Aust. J. Mar. Freshwater Res. 33: 443–458.

    Google Scholar 

  • Bowmer, K.H., 1982b. Residues of glyphosate in irrigation water. Pestic. Sci. 13: 623–638.

    Google Scholar 

  • Boyle, T.P., 1984. The effect of environmental contaminants on aquatic algae. In: L.E. Shubert (ed.), Algae as Ecological Indicators, Academic Press, London, pp. 237–256.

    Google Scholar 

  • Bradbury. S., 1994. Ecological risk assessment for chemical stressors: Challenges in predictive ecotoxicological research. In: M. St. John Warne, (Comp.), Proceedings of the First Australasian Ecotoxicology Conference, Haymarket, Syndey, 1994, June. Centre for Ecotoxicolgy-University of Technology Sydney, Sydney, pp. 1.

    Google Scholar 

  • Brassard, C.A., A.L. Buikema Jr, T.A. Bailey, M.J. Frankenberry, K.M. Lee, A.M. Stavola, C.L. Stunkard & L.W. Touart, 1994. EPA aquatic esocosms study review. In: R.L. Graney, J.H. Kennedy & J.H. Rodgers Jr (eds), Aquatic Mesocosm Studies in Ecological Risk Assessment, C.R.C., Boca Raton, pp. 17–24.

    Google Scholar 

  • Brazner, J.C., L.J. Heinis & D.A. Jensen, 1989. A littoral enclosure for replicated field experiments, Environ. Toxicol. Chem. 8: 1209–1216.

    Google Scholar 

  • Brock, T.C.M., J.J.R.M. Vet, M.J.J. Kerkhofs, J. Lijzen, W.J. van Zuilekom & R. Gijlstra, 1993. Fate and effects of the insecticide Dursban 4E in indoor Elodea-dominated and macrophyte-free freshwater model ecosystems: III. Aspects of ecosystem functioning. Arch. Environ. Contain. Toxicol. 25: 160–169.

    Google Scholar 

  • Cairns, J. Jr., 1986. The myth of the most sensitive species. Bioscience 36: 670–672.

    Google Scholar 

  • Cairns, J. Jr., 1983. Are single species toxicity tests alone adequate for estimating environmental hazard? Hydrobiologia 100: 47–57.

    Google Scholar 

  • Cairns, J. Jr., 1981. Biological monitoring Part VI-Future needs. Water Res. 15:941–952.

    Google Scholar 

  • Cairns, J. Jr. & K.L. Dickson, 1995. Ecological hazard risk assessment–lessons learned and new directions. Hydrobiologia 312: 87–92.

    Google Scholar 

  • Cairns, J. Jr. & D.I. Mount, 1990. Aquatic toxicology. Environ. Sci. Technol. 24: 154–160.

    Google Scholar 

  • Calow, P., 1994. Ecotoxicology in environmental management: A European perspective. In: M. St. John Warne, (Comp.), Proceedings of the First Australasian Ecotoxicology Conference, Haymarket, Syndey, 1994, June. Centre for Ecotoxicolgy, University of Technology, Sydney, Sydney, 12 pp.

    Google Scholar 

  • Chen, C. J. & C.L. Hwang, 1992. Fuzzy multiple attribute decision making. Springer-Verlag, Berlin, 536 pp.

    Google Scholar 

  • Clarke, K.R. & M. Ainsworth, 1993. A method of linking multivariate community structure to environmental variables. Mar. Ecol. Prog. Ser. 92:205–219.

    Google Scholar 

  • Cohen, Y., W. Tsai, S.L. Chetty & G.J. Mayer, 1990. Dynamic partitioning of organic chemicals in regional environments: A multimedia screening-level modeling approach. Environ. Sci. Technol. 24: 1549–1558.

    Google Scholar 

  • Confer, J.L., 1972. Interrelations among plankton, attached algae, and the phosphorus cycle in artificial open systems. Ecol. Monogr. 42: 1–23.

    Google Scholar 

  • Crossland, N.O., D. Bennett, J.M. Wolff & C.P.J. Swannell, 1986. Evaluation of models used to assess the fate of chemicals in aquatic systems. Pestic. Sci. 17: 297–304.

    Google Scholar 

  • Currie, D., 1986. Does orthophosphate uptake supply sufficient phosphorus to phytoplankton to sustain their growth. Can. J. Fish Aquat. Sci. 43: 1483–1487.

    Google Scholar 

  • Currie, D. & J. Klaff, 1984a. A comparison of the abilities of freshwater algae and bacteria to acquire and retain phosphorus. Limnol. Oceanogr. 29: 298–310.

    Google Scholar 

  • Currie, D. & J. Klaff, 1984b. The relative importance of bacterioplankton and phytoplankton in phosphorus uptake in fresh water. Limnol. Oceanogr. 29: 311–321.

    Google Scholar 

  • DeAngelis, D.L., P.J. Mulholland, A.V. Palumbo, A.D. Steinman, M.A. Huston & J.W. Ellwood, 1989. Nutrient dynamics and food-web stability. Annu. Rev. Ecol. Syst. 20: 71–95.

    Google Scholar 

  • deNoyelles, F. & W.D. Kettle, 1985. Experimental ponds for evaluating bioassay predictions. In: T.P. Boyle (ed.), Validation and Predicability of Laboratory Methods for Assessing the Fate and Effects of Contaminants in Aquatic Ecosystems, ASTM STP 865., ASTM, Philadelphia, pp. 91–103.

    Google Scholar 

  • deNoyelles, F., S.L. Dewey, D.G. Huggins & W.D. Kettle, 1994. Aquatic mesocosms in ecological effects testing: detecting direct and indirect effects of pesticides. In: R.L. Graney, J.H. Kennedy & J.H. Rodgers Jr (eds), Aquatic Mesocosm Studies in Ecological Risk Assessment, C.R.C., Boca Raton, pp. 577–602.

    Google Scholar 

  • DePinto, J.V., V.J. Jr. Bierman & E.H. Verhoff, 1976. Seasonal phytoplankton succession as a function of species competition for phosphorus and nitrogen. In: R. Canale (ed.), Modeling Biochemical Processes in Aquatic Ecosystems, Ann Arbor Science, Ann Arbor, pp. 141–169.

    Google Scholar 

  • Dewey, S.L. & F. deNoyelles, 1994. On the use of ecosystem stability measurements in ecological effects testing. In: R.L. Graney, J.H. Kennedy & J.H. Rodgers Jr (eds), Aquatic Mesocosm Studies in Ecological Risk Assessment, C.R.C., Boca Raton, pp. 605–635.

    Google Scholar 

  • Dickerson, J.E. Jr. & J.V. Robinson, 1986. The controlled assembly of microcosmic communities: the selective extinction hypothesis. Oecologia (Berlin) 71, pp. 12–17.

    Google Scholar 

  • Dickson, K.L., T. Duke & G. Loewengart, 1985. A synopsis: Workshop on multispecies toxicity tests. In: J. Cairns Jr. (ed.), Multispecies Toxicity Testing, Pergamon, New York, pp. 248–253.

    Google Scholar 

  • Dodson, S.I. & T. Hanazato, 1995. Commentary on effects of anthropogenic and natural organic chemicals on development, swimming behaviour, and reproduction of Daphnia, a key member of aquatic ecosystems. Environ. Health Perspect. 103: 7–11.

    Google Scholar 

  • Draggan, S. & P. Van Voris, 1979. The role of microcosms in ecological research. Int. J. Environ. Stud. 13: 83–85.

    Google Scholar 

  • Dudzik, M., J. Harte, A. Jassby, E. Lapan, D. Levy & J. Rees, 1979. Some considerations in the design of aquatic microcosms for plankton studies. Int. J. Environ. Stud. 13: 125–130.

    Google Scholar 

  • Faith, D.P., 1991. Effective pattern analysis methods for nature conservation. In: C.R. Margules & M.P. Austin (eds), Nature Conservation: Cost Effective Biological Surveys, CSIRO, Canberra, pp. 47–53.

    Google Scholar 

  • Field, J.G., K.R. Clarke & R.M. Warwick, 1982. A practical strategy for analysing multispecies distribution patterns. Mar. Ecol. Prog. Ser. 8: 37–52.

    Google Scholar 

  • Fischer, R., 1994. Simulate or actual field testing: A comparison. In: R.L. Graney, J.H. Kennedy & J.H. Rodgers Jr (eds), Aquatic Mesocosm Studies in Ecological Risk Assessment, C.R.C., Boca Raton, pp. 35–46.

    Google Scholar 

  • Flum, T.F. & L.J. Shannon, 1987. The effects of three related amides on microecosystem stability. Ecotoxicol. Environ. Saf. 13: 239–252.

    Google Scholar 

  • Ford, J., 1989. The effects of chemical stress on aquatic species composition and community structure. In: S.A. Levin, J.P. Harwell, J.R. Kelly & K.D. Kimball (eds), Ecotoxicology: Problems and Approaches, Springer-Verlag, New York, pp. 99–144.

    Google Scholar 

  • Friederichs, M., O. Franzle & A. Salski, 1996. Fuzzy clustering of existing chemicals according to their ecotoxicological properties. Ecol. Modell. 85: 27–40.

    Google Scholar 

  • Gard, T.C., 1990. A stochastic model for the effects of toxicants on populations. Ecol. Modell. 51: 273–280.

    Google Scholar 

  • Gauch, H. G. Jr., 1982. Multivariate analysis in community ecology. Cambridge University, Cambridge, 298 pp.

    Google Scholar 

  • Gearing, J.N., 1989. The role of aquatic microcosms in ecotoxicologic research as illustrated by large marine systems. In: S.A. Levin, J.P. Harwell, J.R. Kelly & K.D. Kimball (eds), Ecotoxicology: Problems and Approaches, Springer-Verlag, New York, pp. 411–470.

    Google Scholar 

  • Giddings, J.M. & G.K. Eddlemon, 1979. Some ecological and experimental properties of complex aquatic microcosms. Int. J. Environ. Stud. 13: 119–123.

    Google Scholar 

  • Giddings, J.M. & P.J. Franco, 1985. Calibration of laboratory bioassays with results from microcosms and ponds. In: T.P. Boyle (ed.), Validation and Predicability of Laboratory Methods for Assessing the Fate and Effects of Contaminants in the Aquatic Ecosystem, ASTM STP 869, ASTM, Philadelphia, pp. 104–119.

    Google Scholar 

  • Gilbaldi, M., 1975. Biopharmaceutics and clinical pharmacokinetics. Henry Kimpton, London, 181 pp.

    Google Scholar 

  • Gillett, J.W., 1989. The role of terrestrial microcosms and mesocosms in ecotoxicologic research. In: S.A. Levin, J.P. Harwell, J.R. Kelly & K.D. Kimball (eds), Ecotoxicology: Problems and Approaches, Springer-Verlag, New York, pp. 367–410.

    Google Scholar 

  • Graney R.L., 1994. Introduction and regulatory background; Summary and discussion. In: R.L. Graney, J.H. Kennedy & J.H. Rodgers Jr (eds), Aquatic Mesocosm Studies in Ecological Risk Assessment, C.R.C., Boca Raton, pp. 61–68.

    Google Scholar 

  • Green, R. H., 1979. Sampling Design and Statistical Methods for Environmental Biologists. Wiley, Chichester, 257 pp.

    Google Scholar 

  • Grenney, W.J. & D.B. Porcella, 1976. Component modeling: A different approach to represent biological growth dynamics. In: R. Canale (ed.), Modelling Biochemical Process in Aquatic Ecosystems, Ann Arbor Science, Ann Arbor, pp. 357–375.

    Google Scholar 

  • Hairston, N.G., J.D. Allan, P.K. Colwell, D.J. Futuyma, J. Howell, M.D. Lubin, J. Mathias & J.H. Vandermeer, 1968. The relationship between species diversity and stability: an experimental approach with protozoa and bacteria. Ecology 49: 1091–1101.

    Google Scholar 

  • Hallam, TG., 1985. Modelling survival in chemically stressed populations. In: J.B. Shukia, T.G. Hallam & V. Capasso (eds), Developments in Environmental Modelling, Vol. 11, Elsevier, Amsterdam, pp. 125–135.

    Google Scholar 

  • Hanazato, T, 1995. Combined effect of the insecticide carbaryl and the Chaoborus kairomone on helmet development in Daphnia ambigua. Hydrobiologia 310: 95–100.

    Google Scholar 

  • Hanazato, T.& M. Yasuno, 1990a. Influence of time of application of an insecticide on recovery patterns of a zooplankton community in experimental ponds. Arch. Environ. Contain. Toxicol. 19: 77–83.

    Google Scholar 

  • Hanazato, T. & M. Yasuno, 1990b. Influence of persistence period of an insecticide on recovery patterns of a zooplankton community in experimental ponds. Environ. Pollut. 67: 109–122.

    Google Scholar 

  • Hanazato, T. & M. Yasuno, 1990c. Influence of Chaoborus density on the effects of an insecticide on zooplankton communities in ponds. Hydrobiologia 194: 183–197.

    Google Scholar 

  • Hanazato, T. & M. Yasuno, 1989. Effects of carbaryl on the spring zooplankton communities of ponds. Environ. Pollut. 56: 1–10.

    Google Scholar 

  • Hanazato, T. & M. Yasuno, 1987. Effects of a carbamate insecticide, carbaryl, on the summer phyto-and zooplankton communities in ponds. Environ. Pollut. 48: 145–159.

    Google Scholar 

  • Harris, HJ., P.E. Sager, H.A. Regier & G.R. Francis, 1990. Ecotoxicology and ecosystem integrity: The Great Lakes examined. Environ. Sci. Technol. 24: 598–603.

    Google Scholar 

  • Harte, J., D. Levy, A. Lapan, M. Jassbym A. Dudzik & J. Rees, 1978. Aquatic microcosms for assessment of effluent effects. Report No. EA-936.

  • Hastings, A., C.L. Hom, S. Ellner, P. Turchin & H.C.J. Godfray, 1993. Chaos in ecology: Is mother nature a strange attractor? Ann. Rev. Ecol. Syst. 24: 1–33.

    Google Scholar 

  • Havens, K.E., 1995. Insecticide (Carbaryl, l-naphthyl-N-methyl carbamate) effects on a freshwater plankton community–zooplankton size, biomass, and algal abundance. Water Air Soil Pollut. 84: 1–10.

    Google Scholar 

  • Havens, K.E., 1994. An experimental comparison of the effects of two chemical stressors on a freshwater zooplankton assemblage. Environ. Pollut. 84: 245–251.

    Google Scholar 

  • Havens, K.E. & T. Hanazato, 1993. Zooplankton community responses to chemical stressors: a comparison of results from acidification and pesticide contamination research. Environ. Pollut. 82: 277–288.

    Google Scholar 

  • Havens K.E, T.L. East & J.R. Beaver, 1996. Experimental studies of zooplankton-phytoplankton-nutrient interactions in a large subtropical lake (Lake Okeechobee, Florida, USA). Freshwater Biol. 36: 576–597.

    Google Scholar 

  • Hawking, J. H., 1994. A preliminary guide to keys and zoological information to identify invertebrates from Australian freshwaters. Cooperative Research Centre For Freshwater Ecology, Albury, Australia, pp. 36.

    Google Scholar 

  • Heyman, U. & A. Lundgren, 1988. Phytoplankton biomass and production in relation to phosphorus. Hydrobiologia 170: 211–227.

    Google Scholar 

  • Holcombe, G.W., G.L. Phipps & G. Veith, 1989. Use of aquatic lethality tests to estimate safe toxicant concentrations for initial ecological risk assessments. In: G.W. Suter II & M.A. Lewis (eds), Aquatic Toxicology and Environmental Fate: Vol. 11, ASTM STP 1007, ASTM, Philadelphia, pp. 442–458.

    Google Scholar 

  • Holling, C.S., 1973. Resilience and stability of ecological systems. Annu. Rev. Ecol. Syst. 4: 1–23.

    Google Scholar 

  • Hurlbert, S.H., 1975. Secondary effects of pesticides on aquatic ecosystems. Residue Rev. 57: 81–148.

    Google Scholar 

  • Hutchinson, G.E., 1959. Homage to Santa Rosalia or why are there so many kinds of animals? Am. Nat. 93: 145–159.

    Google Scholar 

  • Iwakuma, T., H. Hayashi, I. Yasuda, T. Hanazato & K. Takada, 1990. Impact of whitefish on an enclosure ecosystem in a shallow eutrophic lake: changes in nutrient concentrations, phytoplankton and zoobenthos. Hydrobiologia 200/201: 141–152.

    Google Scholar 

  • Jak, R.G., J.L. Mass & M.C.T. Scholten, 1996. Evaluation of laboratory derived toxic effect concentrations of a mixture of metals by testing fresh water plankton communities in enclosures. Water Res. 30: 1215–1227.

    Google Scholar 

  • James, F.C. & C.E. McCulloch, 1990. Multivariate analysis in ecology and systematics: panacea or pandora's box? Annu. Rev. Ecol. Syst. 21: 129–166.

    Google Scholar 

  • Jeffers, J. N. R., 1988. Practitioner's Handbook on the Modelling of Dynamic Change in Ecosystems. John Wiley, Chichester, 181 pp.

    Google Scholar 

  • Jeffries, C., 1989. Mathematical modeling in ecology. A Workbook for Students. Birkhäuser, Boston, 193 pp.

    Google Scholar 

  • Johnson, B.T, 1986. Potential impact of selected agricultural chemical contaminants on a northern prairie wetland: a microcosm evaluation. Environ. Toxicol. Chem. 5: 473–485.

    Google Scholar 

  • Johnson, P.C., J.H. Kennedy, R.G. Morris, F.E. Hambleton & R.L. Graney, 1994. Fate and effects of cyfluthrin (pyrethroid insecticide) in pond mesocosms and concrete microcosms. In: R.L. Graney, J.H. Kennedy & J.H. Rodgers Jr (eds), Aquatic Mesocosm Studies in Ecological Risk Assessment, C.R.C., Boca Raton, pp. 627–652.

    Google Scholar 

  • Jones, J.R., 1973. Studies onfreshwater bacteria; the effect of enclosures in large experimental tubes. J. Appl. Bact. 36: 445–456.

    Google Scholar 

  • Jones, J.R. & R.W. Bachmann, 1976. Prediction in phosphorus and chlorophyll levels in lakes. J. Water Pollut. Control Fed. 48: 2176–2182.

    Google Scholar 

  • Jones, M., C. Folt & S. Guarda. 1991. Characterizing individual, population and community effects of sublethal levels of aquatic toxicants: an experimental case study using Daphnia. Freshwater Biol. 26: 35–44.

    Google Scholar 

  • Jørgensenn, S.E., 1992. The shifts in species composition and ecological modelling in hydrobiology. Hydrobiologia 239: 115–129.

    Google Scholar 

  • Karr, C.L. & E.J. Gentry, 1993. Control of a chaotic system using fuzzy logic. In: A. Kandel & G. Langholz (eds), Fuzzy Control Systems, CRC, Boca Raton, pp. 475–497.

    Google Scholar 

  • Kelly, J.R. & M.A. Harwell, 1989. Indicators of ecosystem response and recovery. In: S.A. Levin, J.P. Harwell, J.R. Kelly & K.D. Kimball (eds), Ecotoxicology: Problems and Approaches, Springer-Verlag, New York, pp. 9–35.

    Google Scholar 

  • Kennedy, J.H., 1994. Ecosystem analysis: Summary and discussion. In: R.L. Graney, J.H. Kennedy & J.H. Rodgers Jr (eds), Aquatic Mesocosm Studies in Ecological Risk Assessment, C.R.C., Boca Raton, pp. 693–697.

    Google Scholar 

  • Kooijman, S.A.L.M., 1985. Toxicity at population level. In: J. Cairns Jr (ed.), Multispecies Toxicity Testing, Pergamon, New York, pp. 143–164.

    Google Scholar 

  • Kooijman, S.A.L.M. & J.A. Metz, 1984. On the dynamics of chemically stressed populations: The deduction of population consequences from effects on individuals. Ecotoxicol. Environ. Saf. 8: 254–274.

    Google Scholar 

  • Korth, W., M. Thomas, S. Foster, G. Napier & K. H. Bowmer, 1994. Toxicity of rice pesticides to Ceriodaphnia dubia: Implications for management of irrigation drainage water in Australia. In: M. St. John Warne, (Comp.), Proceedings of the first Australasian ecotoxicology conference, Haymarket, Syndey, 1994, June. Centre for Ecotoxicolgy-University of Technology Sydney, Sydney, 5 pp.

    Google Scholar 

  • Kruskal, J.B., 1964. Non-metric multidimensional scaling: A numerical method. Psychometrika 29: 115–129.

    Google Scholar 

  • Kuiper, J. & A.O. Hanstveit, 1984. Fate and effects of 3,4-dichloroaniline (DCA) in marine plankton communities in experimental enclosures. Ecotoxicol. Environ. Saf. 8: 34–54.

    Google Scholar 

  • La Point, T.W. & J.F. Fairchild, 1994. Use of mesocosm data to predict effects in aquatic ecosystems: limits to interpretation. In: R.L. Graney, J.H. Kennedy & J.H. Rodgers Jr (eds), Aquatic Mesocosm Studies in Ecological Risk Assessment, C.R.C., Boca Raton, pp. 241–255.

    Google Scholar 

  • Lampert, W., W. Flechner, E. Pott, U. Schober & K. Störkel, 1989. Herbicide effects on planktonic systems of different complexity. Hydrobiologia 188/189: 415–424.

    Google Scholar 

  • Landis, W.G., N.A. Chester, M.V. Haley, D.W. Johnson, W.T. Jr. Muse & R.W. Tauber, 1989. Utility of the standardized aquatic microcosm as a standard method for ecotoxicological evaluation. In: G.W. Suter II & M.A. Lewis (eds), Aquatic Toxicology and Environmental Fate: Vol. 11, ASTM STP 1007, ASTM, Philadelphia, pp. 353–367.

    Google Scholar 

  • Lassiter, R.R., 1989. Survival of the fattest: A theory for assessing acute effects of hydrophobic, reversibility acting chemicals on populations. Environ. Toxicol. Chem. 8: 176–182.

    Google Scholar 

  • Lawrence, R. & G. Vellidis, 1995. A conceptual model for assessing ecological risk to water quality function of bottomland hardwood forests. Environ. Man. 19: 239–258.

    Google Scholar 

  • Leffler, J.W., 1978. Ecosystem responses to stress in aquatic microcosms. In: J.H. Thorp & J.W. Gibbons (eds), Energy and Environmental Stress in Aquatic Systems, Technical information center, US Dept. Energy, Washington, pp. 139–158.

    Google Scholar 

  • Lemly, A.D., 1996. Risk assessment in the regulatory process of wetlands. Ecotoxicol. Environ. Saf. 35: 41–56.

    Google Scholar 

  • Lemly, A.D., 1997. Role of season in aquatic hazard assessment. Environ. Monit. Assess. 45: 89–98.

    Google Scholar 

  • Levine, S.N., 1989. Theoretical and methodological reasons for variability in the response of aquatic ecosystem processes to chemical stresses. In: S.A. Levin, J.P. Harwell, J.R. Kelly & K.D. Kimball (eds), Ecotoxicology: Problems and Approaches, Springer-Verlag, New York, pp. 145–179.

    Google Scholar 

  • Lynch, M., 1978. Complex interactions between natural coexploiters -Daphnia and Ceriodaphnia. Ecology 59: 552–564.

    Google Scholar 

  • MacKay, D., 1991. Multimedia environmental models. The Fugacity Approach. Lewis, MI, 257 pp.

  • MacKay, D., 1979. Finding fugacity feasible. Environ. Sci. Technol. 13: 1218–1223.

    Google Scholar 

  • MacKay, D. & S. Paterson, 1982. Fugacity revisited. Environ. Sci. Technol. 16: 645A–660A.

    Google Scholar 

  • MacKay, D. & S. Paterson, 1981. Calculating fugacity. Environ. Sci. Technol. 15: 1006–1014.

    Google Scholar 

  • Marshall, J.S. & D.L. Mellinger, 1980. An in situ experimental method for toxicological studies on natural plankton communities. In: J.G. Eaton, P.R. Parrish & A.C. Hendricks (eds), Aquatic Toxicology, ASTM STP 707, ASTM, Philadelphia, ASTM, pp. 27–39.

    Google Scholar 

  • Matthews, G., R. Mathews & W. Landis, 1995. Nonmetric conceptual clustering in ecological and ecotoxicology. AI Applications 9: 41–48.

    Google Scholar 

  • Matveev, V.F., 1991. Self-maintaining plankton: pelagic Cladocera in small microcosms with lake water. Hydrobiologia 225: 301–307.

    Google Scholar 

  • Matveev, V., L. Matveev & G.L. Jones, 1994. Phytoplankton stimulation by mosquitofish in the presence of large Daphnia. Verh. Int. Ver. Theor. Angew. Limnol. 25: 911.

    Google Scholar 

  • May, R. M., 1981. Theoretical Ecology. Principles and Applications. Blackwell Scientific, Oxford, 489 pp.

    Google Scholar 

  • May, R.M., 1976. Simple mathematical models with very complicated dynamics. Nature 261: 459–467.

    Google Scholar 

  • May, R.M., 1975. Biological populations obeying difference equations: Stable points, stable cycles and chaos. J. Theor. Biol. 51: 511–524.

    Google Scholar 

  • May, R.M., 1974. Biological populations with nonoverlapping generations: Stable points, stable cycles and chaos. Science 186: 645–647.

    Google Scholar 

  • May, R.M. & G.F. Oster, 1976. Bifurcations and dynamic complexity in simple ecological models. Am. Nat. 110: 573–599.

    Google Scholar 

  • McCook, J.J., 1994. Understanding ecological community succession: Causal models and theories, a review. Vegetatio 110: 115–147.

    Google Scholar 

  • Megharaj, M., K. Venkateswarlu & A.S. Rao. 1989. Effects of carbofuran and carbaryl on the growth of a green alga and two cyanobacteria isolated from a rice soil. Agric. Ecosyst. Environ. 25: 329–336.

    Google Scholar 

  • Melcher, D. & M. Matthies, 1996. Application of fuzzy clustering to data dealing with phytotoxicity. Ecol. Modell. 85: 41–49.

    Google Scholar 

  • Mendenhall, W., D.D. Wackerly & R.L. Scheaffer, 1991. Mathematical statistics with applications. PWS-Kent, Boston, pp. 818.

  • Metcalf, R.L., G.K. Sangha & I.P. Kapoor, 1971. Model ecosystem for the evaluation of pesticide biodegradability and ecological magnification. Environ. Sci. Technol. 5: 709–713.

    Google Scholar 

  • Miller, N.L., 1992. Stability analysis of toxic substances within aquatic ecosystems and their effect on aquatic populations. Ecol. Modell. 60: 151–165.

    Google Scholar 

  • Misra, V., F.N. Jaffery & P.N. Viswanathan, 1994. Risk assessment of water pollutants. Environ. Monit. Assess. 29: 29–40.

    Google Scholar 

  • Mount, D. I., 1995. Development and current use of single species aquatic toxicity tests. In: J.Jr. Cairns & B. R. Niederlehner (eds), Ecological Toxicity Testing: Scale, Complexity and Relevance, Lewis, Boca Raton, pp. 97–104.

    Google Scholar 

  • Nagata, T, 1988. The microflagellate-picoplankton food linkage in the water column of Lake Biwa. Limnol. Oceanogr. 33: 504–517.

    Google Scholar 

  • Nagle, T., 1992. Conceptual structures: Current research and practice. Ellis Horwood, New York, 644 pp.

    Google Scholar 

  • Neely, W.B., 1979. A preliminary assessment of the environmental exposure to be expected from the addition of a chemical to a simulated aquatic ecosystem. Int. J. Environ. Stud. 13: 101–108.

    Google Scholar 

  • Neely, W.B., G.E. Blau & T.Jr. Alfrey, 1976. Mathematical models predict concentration-time profiles resulting from chemical spill in a river. Environ. Sci. Technol. 10: 72–76.

    Google Scholar 

  • Nicholls, K.H. & P.J. Dillon, 1978. An evaluation of phosphorus-chlorophyll-phytoplankton relationships for lakes. Int. Rev. Gesamten Hydrobiol. 63: 141–154.

    Google Scholar 

  • Nixon, S.W., 1969. A synthetic microcosm. Limnol. Oceanogr. 14: 142–145.

  • Odum, E.P., 1985. Trends expected in stressed ecosysteins. BioScience 35: 419–422.

    Google Scholar 

  • Odum, E.P., 1984. The mesocosm. BioScience 34: 558–562.

    Google Scholar 

  • Odum, E. P., 1971. Fundamentals of ecology. Philadelphia, Saunders, pp. 574.

  • Odum, E.P., 1962. Relationships between structure and function in the ecosystem. Japanese J. Ecol. 12: 108–118.

    Google Scholar 

  • Oviatt, C.A., 1981. Effects of differing mixing schedules on phytoplankton, zooplankton, and nutrients in marine microcosms. Mar. Ecol. Prog. Ser. 4: 57–67.

    Google Scholar 

  • Papst, M.H. & M.G. Boyer, 1980. Effects of two organophosphorus insecticides on the chlorophyll a and pheopigment concentrations of standing ponds. Hydrobiologia 69: 245–250.

    Google Scholar 

  • Parkhurst, B. R. 1995. Are single species toxicity test results valid indicators of effects to aquatic communities? In: J. Jr. Cairns & B. R. Niederlehner (eds), Ecological Toxicity Testing: Scale, Complexity and Relevance, Lewis, Boca Raton, pp. 105–121.

    Google Scholar 

  • Patrick, R., 1985. What should be the rationale for bioassays. In: J. Jr. Cairns (ed.), Multispecies Toxicity Testing, Pergamon, New York, 261 pp.

    Google Scholar 

  • Peterson, S.M. & G.E. Batley, 1993a. The fate of pesticides in Australian rivers. Chem. Aust. 60: 395–397.

    Google Scholar 

  • Peterson, S.M. & G.E. Batley, 1993b. The fate and transport of endosulfan in aquatic ecosystems. Environ. Pollut. 83: 143–152.

    Google Scholar 

  • Pimm, S.L., 1984. The complexity and stability of ecosystems. Nature 307: 321–326.

    Google Scholar 

  • Pimm, S.L. & L.H. Lawton, 1980. Are food webs divided into compartments? J. Animal Ecol. 49: 897–898.

    Google Scholar 

  • Porter, K.G., 1977. The plant-animal interface in freshwater ecosystems. Am. Sci. 65: 159–170.

    Google Scholar 

  • Rapport, D.J., H.A. Regier & T.C. Hutchinson, 1985. Ecosystem behaviour under stress. Am. Nat. 125: 617–640.

    Google Scholar 

  • Raven, P.J. & J.J. George, 1989. Recovery by riffle of macroinvertebrates in a river after a major accidental spillage of chlorpyrifos. Environ. Pollut. 59: 55–70.

    Google Scholar 

  • Reynolds, C.S., 1984. Phytoplankton periodicity: the interactions of form, function and environmental variability. Freshwater Biol. 14: 111–142.

    Google Scholar 

  • Ringelberg, J. & K. Kersting, 1978. Properties of an aquatic microecosystem: I. General introduction to the prototypes. Arch. Hydobiol. 83: 47–68.

    Google Scholar 

  • Roberts, T.R., 1996. Assessing the environmental fate of agrochemicals. Contain. Agric. Wastes 31: 325–335.

    Google Scholar 

  • Rodgers, J.H.Jr., 1994. Scaling: Summary and discussion. In: R.L. Graney, J.H. Kennedy & J.H. Rodgers Jr (eds), Aquatic Mesocosm Studies in Ecological Risk Assessment, C.R.C., Boca Raton, pp. 397–400.

    Google Scholar 

  • Rothman, D.S. & J.B. Robinson, 1997. Growing pains: A conceptual framework for considering integrated assessments. Environ. Monit. Assess. 46: 23–43.

    Google Scholar 

  • Ruttner-Kolisko, A., 1974. Plankton rotifers, biology and taxonomy. Binnengewässer 26: 1–6.

    Google Scholar 

  • Sabatini, G. & B.M. Marcotte, 1983. Water pollution: a view from ecology. Mar. Pollut. Bull. 14: 254–256.

    Google Scholar 

  • Scribner, E.A., A. Kastl, E.G. Moodie, RJ. Williams & J.W. Young, 1987. Organochlorine pesticide and polychlorinated biphenyl (PCB) residues in fish and other aquatic organisms in New South Wales. Part I-Fresh water. In: E.A. Scribner, A. Kasti, E.G. Moodie, R.J. Williams & J.W. Young (eds), Miscellaneous Bulletin 4, Fisheries Research Institute, Fisheries Division, N.S.W. Department of Agriculture, Cronulla, Australia, 33 pp.

    Google Scholar 

  • Shaw, J.R. & M.J. Hainer, 1995. A rebuttal to-the toxicity of diquat, endothall and fluridone to the early life states of fish. J. Freshwater Ecol. 10: 303–306.

    Google Scholar 

  • Shaw, J.R. & M.L. Manning, 1996. Evaluating macroinvertebrate populations and community level effects in outdoor microcosms-use of in situ bioassays and multiariate analysis. Environ. Toxicol. Chem. 15: 608–617.

    Google Scholar 

  • Shaw, J.R., S.J. Maund & I.R. Hill, 1995. Fathead minnow reproduction in outdoor microcosms-a comparison to bluegill sunfish reproduction in large mesocosms. Environ. Toxicol. Chem. 14: 1753–1762.

    Google Scholar 

  • Shaw, J.L., M. Moore, J.H. Kennedy & I.R. Hill, 1994. Design and statistical analysis of field aquatic mesocosm studies. In: R.L. Graney, J.H. Kennedy & J.H. Rodgers Jr. (eds), Aquatic Mesocosm Studies in Ecological Risk Assessment, C.R.C., Boca Raton, pp. 85–103.

    Google Scholar 

  • Shepard, R.N., 1980. Multidimensional scaling, tree-fitting, and clustering. Science 210: 390–398.

    Google Scholar 

  • Shiel, R.J. & W. Koste, 1986. Australian rotifera: Ecology and biogeography. In: P. De Dekkar & W.D. Williams (eds), Limnology in Australia, CSIRO, Melbourne, pp. 141–150.

    Google Scholar 

  • Simon, D.L., S. Helliwell & D. Robertson, 1995. The impact of chlorpyrifos on an enclosure system in a shallow billabong. Aust. J. Ecotoxicol. 2: 137–142.

    Google Scholar 

  • Søndergaard, M., E. Jeppesen, E. Mortensen, E. Dali, P. Kristensen & O. Sortkjµr, 1990. Phytoplankton biomass reduction after planktivorous fish reduction in a shallow, eutrophic lake: a combined effect of reduced internal P-loading and increased zooplankton grazing. Hydrobiologia 200/201: 229–240.

    Google Scholar 

  • Sommer, U., 1989. The role of competition of resources in phytoplankton succession. In: I. Morris (ed.), Plankton Ecology. Succession in Plankton Communities, Blackwell, Oxford, pp. 57–106.

    Google Scholar 

  • Sommer, U., Z.M. Gliwicz, W. Lampert & A. Duncan, 1986. The PEG-inodel of the seasonal succession of planktonic events in fresh waters. Arch. Hydrobiol. 106: 433–471.

    Google Scholar 

  • Staley, C.S. & M.J. Case, 1987. An evaluation of in situ microcosms for validating aquatic fate and transport models. Environ. Monit. Assess. 8: 103–112.

    Google Scholar 

  • Starling, F.L.R.M., 1993. Control of eutrophication by silver carp (Hypophthalmichthys molitrix) in the tropical Paranoá Reservoir (Brasilia, Brazil): a mesocosm experiment. Hydrobiologia 257: 143–152.

    Google Scholar 

  • Stauffer, R.E., 1991. Environmental factors influencing chlorophyll v. nutrient relationships in lakes. Freshwater Biol. 25: 279–295.

    Google Scholar 

  • Steele J. H., 1979. The uses of experimental ecosystems. Phil. Trans. R. Soc. Lond. B. 286: 583–595.

    Google Scholar 

  • Sterner, R.W., 1989. The role of grazers on phytoplankton succession. In: U. Sommer (ed.), Plankton ecology. Succession in plankton communities, Springer-Verlag, Berlin, pp. 107–170.

    Google Scholar 

  • Stunkard, C.L., 1994. Tests of proportional means for mesocosm studies. In: R.L. Graney, J.H. Kennedy & J.H. Rodgers Jr (eds), Aquatic Mesocosm Studies in Ecological Risk Assessment, C.R.C., Boca Raton, pp. 71–83.

    Google Scholar 

  • Suter, G.W., 1996. Toxicological benchmarks for screening contaminants of potential concern for effects on freshwater biota. Environ. Toxicol. Chem. 15: 1232–1241.

    Google Scholar 

  • Suter, G.W., 1995. Adapting ecological risk assessment for ecosystem valuation. Ecol. Econ. 14: 137–141.

    Google Scholar 

  • Suter, G.W.I. & A.E. Rosen, 1988. Comparative toxicology for risk assessment of marine fishes and crustaceans. Environ. Sci. Technol. 22: 548–556.

    Google Scholar 

  • Swartzman, G. L. & S.P. Kaluzny, 1987. Ecological Simulation Primer. MacMillan, NewYork, 370 pp.

    Google Scholar 

  • Takahashi, M. & F.A. Whitney, 1977. Physical features of controlled experimental ecosystems (CEE) with special reference to their temperature, salinity and light penetration structures. Bull. Mar. Sci. 27: 8–16.

    Google Scholar 

  • Taub, F.B., 1976. Demonstration of pollution effects in aquatic microcosms. Int. J. Environ. Stud. 10: 23–33.

    Google Scholar 

  • Taub, F.B., 1974. Closed ecological systems. Rev. Ecol. Syst. 5: 139–160.

    Google Scholar 

  • Taub, F.B., 1969. A biological model of a freshwater community: A gnotobiotic ecosystem. Limnol. Oceanogr. 14: 136–142.

    Google Scholar 

  • Thoma, K. & B.C. Nicholson, 1989. Pesticide losses in runoff from a horticultural catchment in South Australia and their relevance to stream and reservoir water quality. Environ. Technol. Lett. 10: 117–129.

    Google Scholar 

  • Thomann, R.V., 1989. Bioaccumulation model of organic chemical distribution in aquatic food chains. Environ. Sci. Technol. 23: 299–307.

    Google Scholar 

  • Thompson, D.G., S.B. Holms, D.G. Pitt, K.R. Solomon & K.L. Wainio-Keizer, 1994. Applying concentration-response theory to aquatic enclosure studies. In: R.L. Graney, J.H. Kennedy & J.H. Rodgers Jr (eds), Aquatic Mesocosm Studies in Ecological Risk Assessment, C.R.C., Boca Raton, pp. 129–156.

    Google Scholar 

  • Tilman, D., 1977. Resource competition between planktonic algae: An experimental and theoretical approach. Ecology 58: 338–348.

    Google Scholar 

  • Tilman, D., S.S. Kilham & P. Kilham, 1982. Phytoplankton community ecology: The role of limiting nutrients. Ann. Rev. Ecol. Syst. 13: 349–372.

    Google Scholar 

  • Touart, L.W., 1994. Regulatory endpoints and the experimental design of aquatic mesocosm tests. In: R.L. Graney, J.H. Kennedy & J.H. Rodgers Jr (eds), Aquatic Mesocosm Studies in Ecological Risk Assessment, C.R.C., Boca Raton, pp. 25–33.

    Google Scholar 

  • Underwood, A.J., 1993. The mechanics of spatially replicated sampling programmes to detect environmental impacts in a variable world. Aust. J. Ecol. 18: 99–116.

    Google Scholar 

  • Urban, D.J., 1994. Mesocosms in risk assessment. In: R.L. Graney, J.H. Kennedy & J.H. Rodgers Jr (eds), Aquatic Mesocosm Studies in Ecological Risk Assessment, C.R.C., Boca Raton, pp. 7–16.

    Google Scholar 

  • U.S. Environmental Protection Agency. 1991. Technical support document for water quality-based toxics control. U.S. Environmental Protection Agency, Office of Water, Washington, D.C. EPA/505/2-91/001, pp. 313.

    Google Scholar 

  • U.S. Environmental Protection Agency. 1996. Proposed guidelines for ecological risk assessment. Risk Assessment Forum, U.S. Environmental Protection Agency, Washington, D.C. EPA/630/R95/002B, pp. 247.

    Google Scholar 

  • U.S. Environmental Protection Agency. 1997. Draft whole effluent toxicity (WET) implementation strategy. U.S. Environmental Protection Agency, Office of Wastewater Management, Washington, D.C. 9 pp.

    Google Scholar 

  • Vadiee, N., 1993a. Fuzzy rule-based expert systems I. In: M. Jamshidi, N. Vadiee & T.J. Ross (eds), Fuzzy Logic and Control. Software and Hardware Applications, Prentice Hall: 90–116.

    Google Scholar 

  • Vadiee, N., 1993b. Fuzzy rule-based expert systems II. In: M. Jamshidi, N. Vadiee & TJ. Ross (eds), Fuzzy Logic and Control. Software and Hardware Applications, Prentice Hall: 117–136.

  • Vanwijngaarden, R.P.A., P.J. Vandenbrink, J.H.O. Voshaar & P. Leeuwangh, 1995. Ordination techniques for analysing response of biological communities to toxic stress in experimental ecosystems. Ecotoxicology 4: 61–77.

    Google Scholar 

  • Vollenweider, R.A., 1975. Input-output models with special reference to the phosphorus loading concept in limnology. Schweiz. Z. Hydrol. 37: 53–84 [abstract].

    Google Scholar 

  • Vörös, L. & J. Padisák, 1991. Phytoplankton biomass and chlorophyll-a in some shallow lakes in central Europe. Hydrobiologia 215: 111–119.

    Google Scholar 

  • Waters, T.F., 1977. Secondary production in inland waters. Advances. Ecol. Res. 10: 91–164.

    Google Scholar 

  • Wauchope, R.D., R.L. Graney, S. Cryer, C. Eadsforthm, W.A. Klein & K.D. Rache. 1995. Pesticide report 34. Pesticide runoff–methods and interpretation of field studies. Pure Appi, Chem. 67: 2089–2108.

    Google Scholar 

  • Weber C. I. 1993. Methods for measuring the acute toxicity of effluents and receiving waters to freshwater and marine organims. U.S. Environmental Protection Agency, Cincinnati, Ohio, EPA/604/4-90/027F, pp. 204.

    Google Scholar 

  • Wu, H.L, B.L. Li, R. Stoker & Y. Li, 1996. A semi-arid grazing ecosystem simulation model with probabilistic and fuzzy parameters. Ecol. Modell. 90: 147–160.

    Google Scholar 

  • Zadeh, L.A., 1973. Outline of a new approach to the analysis of complex systems and decision processes. IEEE Trans. Syst. Man. Cybern. SMC-3: 28–44.

    Google Scholar 

  • Zadeh, L.A., 1965. Fuzzy sets. Inform. Control 8: 338–353.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Simon, D., Helliwell, S. & Robards, K. Pesticide toxicity endpoints in aquatic ecosystems. Journal of Aquatic Ecosystem Stress and Recovery 6, 159–177 (1997). https://doi.org/10.1023/A:1009920227241

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009920227241

  • ecosystems
  • endpoints
  • pesticide
  • review
  • toxicity