Skip to main content
Log in

Atomic Force Microscopy Examination of the Evolution of the Surface Morphology of Bi4Ti3O12 grown by Molecular Beam Epitaxy

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

The surface morphology of (0 0 1) Bi4Ti3O12 grown on (0 0 1) SrTiO3 by reactive molecular beam epitaxy (MBE) has been examined using atomic force microscopy (AFM). Initial nucleation of a 1/4 unit cell thick layer is followed by growth of 1/2 unit cell thick layers. Between 9 and 16 layers, a transition to 3-dimensional growth occurs, leading to well-defined mounds. This implies a Stranski-Krastonov growth mode. During growth, the morphology follows a behavior consistent with the dynamic scaling hypothesis and we extract values for the scaling exponents α and β from the AFM data. A thickness variation in α is observed and reflects the strain relief associated with the Stranski-Krastonov growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Aurivillius, Arkiv Kemi, 1, 463 (1949); B. Aurivillius and P.H. Fang, Phys. Rev., 126, 893 (1962).

    Google Scholar 

  2. S.-Y. Wu, IEEE Trans. Electron Devices, ED-21, 499 (1974).

    Google Scholar 

  3. S.-Y. Wu, W.J. Takei, and M.H. Francombe, Ferroelectrics, 10, 209 (1976).

    Google Scholar 

  4. R. Ramesh, K. Luther, B. Wilkens, D.L. Hart, E. Wang, J.M. Tarascon, A. Inam, X.D. Wu, and T. Venkatesan, Appl. Phys. Lett., 57, 1505 (1990).

    Google Scholar 

  5. Bi4Ti3O12 is monoclinic with space group B1a1 as shown by A.D. Rae, J.G. Thompson, R.L. Withers, and A.C. Willis, Acta Cryst., B46, 474 (1990).

    Google Scholar 

  6. Landolt-Bornstein: Numerical Data and Functional Relationships in Science and Technology New Series, Group III, Vol 16a, edited by K.-H. Hellwege and A.M. Hellwege (Springer-Verlag, Berlin, 1981), pp. 59, 237.

    Google Scholar 

  7. C.D. Theis, J. Yeh, D.G. Schlom, M.E. Hawley, G.W. Brown, J.C. Jiang, and X.Q. Pan, Appl. Phys. Lett., 72, 2817 (1998).

    Google Scholar 

  8. Z. Zhang and M.G. Lagally, Science, 276, 377 (1997).

    Google Scholar 

  9. X.-Y. Zheng, D.H. Lowndes, S. Zhu, J.D. Budai, and R.J. Warmack, Phys. Rev. B, 45, 7584 (1992).

    Google Scholar 

  10. V. Dediu, et.al., Phys. Rev. B, 54, 1564 (1996).

    Google Scholar 

  11. D.W. Pashley, Mater. Res. Soc. Symp. Proc., 37, 67 (1985).

    Google Scholar 

  12. C.W. Snyder, B.G. Orr, D. Kessler, and L.M. Sander, Phys. Rev. Lett., 66, 3032 (1991).

    Google Scholar 

  13. F. Family and T. Vicsek, J. Phys. A: Math. Gen., 18, L75 (1985).

    Google Scholar 

  14. J. Lapujoulade, Surf. Sci. Rep. 20, 191 (1994).

    Google Scholar 

  15. Y.-L. He, H.-N. Yang, T.-M. Lu, and G.-C. Wang, Phys. Rev. Lett., 69, 3770 (1992); Y.-B. Park, S.-W. Rhee, and J.-H. Hong, J. Vac. Sci. Technol. B, 15, 1995 (1997).

    Google Scholar 

  16. Digital Instruments, Santa Barbara, California, USA.

  17. M. Kawasaki, K. Takahashi, T. Maeda, R. Tsuchiya, M. Shinohara, O. Ishiyama, T. Yonezawa, M. Yoshimoto, and H. Koinuma, Science, 266, 1540 (1994).

    Google Scholar 

  18. M.W. Mitchell and D.A. Bonnell, J. Mater. Res., 5, 2244 (1990); J.M. Gomez-Rodriguez, A.M. Baro, and R.C. Salvarezza, J. Vac. Sci. Technol. B, 9, 495 (1993); J. Krim, I. Heyvaert, C. Van Haesendonck, and Y. Bruynseraede, Phys. Rev. Lett., 70, 57 (1993).

    Google Scholar 

  19. N.-E. Lee, D.G. Cahill, and J.E. Greene, J. Appl. Phys., 80, 2199 (1996).

    Google Scholar 

  20. B.W. Karr, I. Petrov, D.G. Cahill, and J.E. Greene, Appl. Phys. Lett., 70, 1703 (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brown, G., Hawley, M., Theis, C. et al. Atomic Force Microscopy Examination of the Evolution of the Surface Morphology of Bi4Ti3O12 grown by Molecular Beam Epitaxy. Journal of Electroceramics 4, 351–356 (2000). https://doi.org/10.1023/A:1009918711349

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009918711349

Navigation