Skip to main content
Log in

Representations of the Quantum Algebra Uq(un, 1)

  • Published:
Algebras and Representation Theory Aims and scope Submit manuscript

Abstract

The main aim of the paper is to study infinite-dimensional representations of the real form U q (u n, 1) of the quantized universal enveloping algebra U q (gl n + 1). We investigate the principal series of representations of U q (u n, 1) and calculate the intertwining operators for pairs of these representations. Some of the principal series representations are reducible. The structure of these representations is determined. Then we classify irreducible representations of U q (u n, 1) obtained from irreducible and reducible principal series representations. All *-representations in this set of irreducible representations are separated. Unlike the classical case, the algebra U q (u n, 1) has finite-dimensional irreducible *-representations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Drinfeld, V. G.: Hopf algebras and the quantum Yang–Baxter equation, Soviet Math. Dokl. 32 (1985), 254–258.

    Google Scholar 

  2. Jimbo, M.: A q-analogue of U.g/ and the Yang–Baxter equation, Lett. Math. Phys. 10 (1985), 63–69.

    Article  Google Scholar 

  3. Rosso, M.: Finite dimensional representations of the quantum analog of the enveloping algebra of a complex simple Lie algebra, Comm. Math. Phys. 117 (1988), 581–593.

    Google Scholar 

  4. Lusztig, G.: Quantum deformations of certain simple modules over enveloping algebras, Adv. Math. 70 (1988), 237–249.

    Google Scholar 

  5. Klimyk, A. and Schmüdgen, K.: Quantum Groups and Their Representations, Springer, New York, 1997.

    Google Scholar 

  6. Jantzen, J. C.: Lectures on Quantum Groups, Amer. Math. Soc., Providence, RI, 1996.

  7. Knapp, A.: Representation Theory of Semisimple Groups. An Overview Based on Examples, Princeton Univ. Press, Princeton, 1986.

    Google Scholar 

  8. Dixmier, J.: Enveloping Algebras, North-Holland, Amsterdam, 1977.

    Google Scholar 

  9. Klimyk, A. U. and Groza, V. A.: Representations of quantum pseudounitary algebra, Preprint Inst. Theoret. Phys. ITP–89–37P, Kiev, 1989.

  10. Guizzi, V.: A classification of unitary highest weight modules of the quantum analogue of the symmetric pair (A n, A n-1), J. Algebra 192 (1997), 102–129.

    Google Scholar 

  11. Jimbo, M.: Quantum R-matrix related to the generalized Toda system: An algebraic approach, In: Lectutre Notes in Phys. 246, Springer, New York, 1986, pp. 335–361.

    Google Scholar 

  12. Ueno, K., Takebayasi, T., and Shibukawa, Y.: Construction of Gel'fand–Tsetlin basis for U q(gl(N + 1)) modules, Publ. RIMS Kyoto Univ. 26 (1990), 667–679.

    Google Scholar 

  13. Vaksman, L. L. and Korogodsky, L. I.: Harmonic analysis on quantum hyperboloids, Preprint Inst. Theoret. Phys. ITP–90–27P, Kiev, 1990.

  14. Rosso,M.: Analogues de la forme de Killing et du théoreme d'Harish-Chandra pour les groupes quantigues, Ann. Sci. École Norm Sup. 23 (1990), 445–467.

    Google Scholar 

  15. Klimyk, A. U.: Matrix Elements and Clebsch–Gordan Coefficients of Group Representations, Naukova Dumka, Kiev, 1979.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Groza, V.A., Iorgov, N.Z. & Klimyk, A.U. Representations of the Quantum Algebra Uq(un, 1). Algebras and Representation Theory 3, 105–130 (2000). https://doi.org/10.1023/A:1009906111602

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009906111602

Navigation