Skip to main content
Log in

Interpolation of Scattered 3D PTV Data to a Regular Grid

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

The velocity data obtained by many 3D measurement methods such as particle tracking velocimetry (PTV) are not regularly distributed in3D space. We revised three numerical schemes to interpolate the scattered velocity vectors to a regularly spaced grid. Additionally, two techniques were examined to smooth the resulting flow field. The different algorithms were tested for a synthetic data set based on the analytical solution of Burgers' vortex. To study the impact of measurement errors a Gaussian noise was superimposed on the exact solution. It was found that an interpolation scheme of higher order does not necessarily perform better than one of lower order. The most‘robust’ algorithm was used to process 3D PTV data, which were obtained from measurements of a separating flow in a forward facing step configuration. Information on the 3D streamlines and vortex structures was obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adrian, R.J., Meinhart, C.D., Barnhard, D.H. and Papen, G.C., An HPIV system for turbulence research. In: Rood, E.P. (ed.), Holographic Particle Image Velocimetry, Vol. 148. ASME, New York (199Ë) pp. 17–21.

    Google Scholar 

  2. Agterberg, F.P., Geomathematics. Mathematical Background and Geo-Science Applications. Developments in Geomathematics, Vol. 1. Elsevier, Amsterdam (1974).

    Google Scholar 

  3. Agüí, J.C. and Jiménez, J., On the performance of particle tracking. J.Fluid Mech. 185 (1987) 447–468.

    Article  ADS  Google Scholar 

  4. Boor, C.D., A Practical Guide to Splines. Springer-Verlag, New York (1978).

    MATH  Google Scholar 

  5. Brücker, C., Digital-Particle-Image-Velocimetry (DPIV) in a scanning light-sheet: ËD starting flow around a short cylinder. Exp. in Fluids 19 (1995) 255–262.

    ADS  Google Scholar 

  6. Dickerson, M.H., MASCON-A mass consistent atmospheric flux model for regions with complex terrain. J. Appl. Meteorology 17(Ë) (1978) 241–25Ë.

    Article  ADS  Google Scholar 

  7. Dracos, T. (ed.), Three-Dimensional Velocity and Vorticity Measuring and Image Analysis Techniques. ERCOFTAC Series, Vol. 4. Kluwer Academic Publishers, Dordrecht (1996).

    Google Scholar 

  8. Efron, B., Computers and the theory of statistics: Thinking the unthinkable. SIAM Rev. 21(4) (1979) 460–480.

    Article  MATH  MathSciNet  Google Scholar 

  9. Efron, B., Estimating the error rate of a prediction rule: Improvement on cross-validation. J. Amer. Statist. Assoc. 78(Ë82) (198Ë) Ë16-ËË1.

    MathSciNet  Google Scholar 

  10. Guezennec, Y.C., Zhao, Y. and Gieseke, T.J., High-speed Ë-D scanning particle image velocimetry (Ë-D SPIV) technique. In: Adrian, R.J. (ed.), Proceedings of Seventh International Symposium on Applications of Laser Techniques to Fluid Mechanics, Lisbon. Springer-Verlag, Berlin (1994) Paper 26.1.

    Google Scholar 

  11. Hinsch, K.D. and Hinrichs, H., Three-dimensional velocity and vorticity measuring and image analysis techniques. In: Dracos, T. (ed.), Three-Dimensional Particle Velocimetry. ERCOFTAC Series, Vol. 4. Kluwer Academic Publishers, Dordrecht (1996) pp. 129–150.

    Google Scholar 

  12. Imaichi, K. and Ohmi, K., Numerical processing of flow-visualization pictures-Measurement of two-dimensional vortex flow. J. Fluid Mech. 129 (1996) 28Ë-Ë11.

    Google Scholar 

  13. Jeong, J. and Hussain, F., On the identification of a vortex. J. Fluid Mech. 285 (1995) 69–94.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  14. Kobayashi, T., Saga, T. and Sekimoto, K., Velocity measurements of three-dimensional flow around rotating parallel discs by digital image processing. ASME FED 85 (1989) 29-Ë6.

    Google Scholar 

  15. Maas, H.-G., Digitale Photogrammetrie in der dreidimensionalen Strömungsmesstechnik. Ph.D. Thesis, ETH Zürich, Switzerland (1992).

  16. Maas, H.-G., Grün, A. and Papantoniou, D., Particle tracking in three-dimensional turbulent flows. Part I: Photogrammetric determination of particle coordinates. Exp. in Fluids 15 (199Ë) 1ËË-146.

    Google Scholar 

  17. Malik, N., Dracos, T. and Papantoniou, D., Particle tracking in three-dimensional turbulent flows. Part II: Particle tracking. Exp. in Fluids 15 (199Ë) 279–294.

    ADS  Google Scholar 

  18. Malik, N.A. and Dracos, T., Interpolation schemes for three-dimensional velocity fields from scattered data using Taylor expansions. J. Comput. Phys. 119 (1995) 2Ë1–24Ë.

    Article  MathSciNet  Google Scholar 

  19. Matheron, G., The intrinsic random functions and their applications. Adv. Appl. Prob. 21 (197Ë) 168–17Ë.

    Google Scholar 

  20. Miller, R.G., The jackknife-A review. Biometrika 61 (1974) 1–17.

    Article  MATH  MathSciNet  Google Scholar 

  21. Nishino, K., Kosagi, N. and Hirata, M., Three-dimensional particle tracking velocimetry based on automated digital image processing. J. Fluid Engrg. 111 (1989) Ë84-Ë91.

    Google Scholar 

  22. Press, W.H., Teukolsky, S.A., Vetterling, W.T. and Flannery, B.P., Numerical Recipes in C. Cambridge University Press, Cambridge (1994).

    Google Scholar 

  23. Rist, U., Müller, K. and Wagner, S., Visualisation of late-stage transitional structures in numerical data using vortex identification and feature extraction. In: Carlomagno, G.M. and Grant, I. (eds), 8th International Symposium on Flow Visualization, Sorrento, September 1–4. Edinburgh, CD Rom Proceedings (1998).

  24. Sasaki, Y., An objective analysis based on the variational method. J. Meteorol. Soc. Japan Ë6(Ë) (1958) 77–88.

    Google Scholar 

  25. Sherman, C.A., A mass-consistent model for wind fields over complex terrain. J. Appl. Meteorol. 17(Ë) (1978) Ë12-Ë19.

    Google Scholar 

  26. Sibson, R., A brief description of natural-neighbour interpolation. In: Barnett, V. (ed.), Interpreting Multivariant Data. John Wiley and Sons, Chichester (1981) pp. 21-Ë6.

    Google Scholar 

  27. Stüer, H., Investigation of separation on a forward facing step. Ph.D. Thesis, No. 1Ë1Ë2, ETH Zürich, Switzerland (1999).

    Google Scholar 

  28. Stüer, H., Gyr, A. and Kinzelbach, W., Laminar separation on a forward facing step. European J. Mech. B/Fluids 18 (1999) 675–692.

    Article  MATH  Google Scholar 

  29. Stüer, H. and Blaser, S., Assessment of spatial derivatives determined from scattered ËD PTV data. Exp. in Fluids, submitted.

  30. Ushijima, S. and Tanaka, N., Three-dimensional particle tracking velocimetry with laser-light sheet scanning. Trans. ASME 118 (1996) Ë52-Ë57.

    Google Scholar 

  31. Virant, M., Anwendung des dreidimensionalen Particle-Tracking-Velocimetry auf die Untersuchung von Dispersionsvorgängen in Kanalströmungen. Ph.D. Thesis, ETH Zürich, Switzerland (1996).

    Google Scholar 

  32. Willert, C.E. and Gharib, M., Three-dimensional particle imaging with a single camera. Exp. in Fluids 12 (1992) Ë5Ë-Ë58.

    Article  Google Scholar 

  33. Wintergerste, T. and Kleiser, L., Direct numerical simulation of transition in a threedimensional boundary layer. In: Henkes, R.A.W.M. and van Ingen, J.L. (eds), Proceedings Transitional Boundary Layers in Aeronautics. North-Holland, Amsterdam (1996) pp. 145–15Ë.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stüer, H., Blaser, S. Interpolation of Scattered 3D PTV Data to a Regular Grid. Flow, Turbulence and Combustion 64, 215–232 (2000). https://doi.org/10.1023/A:1009904013148

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009904013148

Navigation