Skip to main content
Log in

Reynolds Number Dependence of Velocity Structure Functions in a Turbulent Pipe Flow

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

Low-order moments of the increments δu andδv where u and v are the axial and radial velocity fluctuations respectively, have been obtained using single and X-hot wires mainly on the axis of a fully developed pipe flow for different values of the Taylor microscale Reynolds numberR λ. The mean energy dissipation rate〉ε〈 was inferred from the uspectrum after the latter was corrected for the spatial resolution of the hot-wire probes. The corrected Kolmogorov-normalized second-order structure functions show a continuous evolution withR λ. In particular, the scaling exponentζ v , corresponding to the v structure function, continues to increase with R λ in contrast to the nearly unchanged value of ζ u . The Kolmogorov constant for δu shows a smaller rate of increase with R λ than that forδv. The level of agreement with local isotropy is examined in the context of the competing influences ofR λ and the mean shear. There is close but not perfect agreement between the present results on the pipe axis and those on the centreline of a fully developed channel flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gad-el-Hak, M. and Bandyopadhyay, P.R., Reynolds number effects in wall-bounded turbulent flows. Appl. Mech. Rev. 47(1994) 307-365.

    Article  Google Scholar 

  2. Coles, D.E., The turbulent boundary layer in a compressible fluid. Rand Corp. Report No. R-403-PR (1962).

  3. Purtell, L., Klebanoff, P.S. and Buckley, F.T., Turbulent boundary layer at low Reynolds number. Phys. Fluids 24(1981) 802-811.

    Article  ADS  Google Scholar 

  4. Murlis, J., Tsai H.M. and Bradshaw, P., Structure of turbulent boundary layers at low Reynolds numbers. J. Fluid Mech. 122(1982) 13-56.

    Article  ADS  Google Scholar 

  5. Antonia, R.A., Rajagopalan, S., Subramanian, C.S. and Chambers, A.J., Reynolds number dependence of the structure of a turbulent boundary layer. J. Fluid Mech. 121(1982) 123-140.

    Article  ADS  Google Scholar 

  6. Spalart, P.R., Direct numerical simulation of a turbulent boundary layer up to R_D 1410. J. Fluid Mech. 187(1988) 61-98.

    Article  MATH  ADS  Google Scholar 

  7. Sreenivasan, K.R., The turbulent boundary layer. In: Gad-el-Hak, M. (ed.), Frontiers in Experimental Fluid Mechanics. Springer-Verlag, Berlin (1989) pp. 159-209.

    Google Scholar 

  8. Head, M.R. and Bandyopadhyay, P.R., New aspects of turbulent boundary layer structure. J. Fluid Mech. 107(1981) 297-338.

    Article  ADS  Google Scholar 

  9. Antonia, R.A., Bisset, D.K. and Browne, L.W.B., Effect of Reynolds number on the topology of the organized motion in a turbulent boundary layer. J. Fluid Mech. 213(1990) 267-286.

    Article  ADS  Google Scholar 

  10. Falco, R.E., A coherent structure model of the turbulent boundary layer and its ability to predict Reynolds number dependence. Philos. Trans. Roy. Soc. London A336(1991) 103-120.

    ADS  Google Scholar 

  11. Wei, T. and Willmarth, W.W., Reynolds number effects on the structure of turbulent channel flow. J. Fluid Mech. 204(1989) 57-95.

    Article  ADS  Google Scholar 

  12. Antonia, R.A., Teitel, M., Kim, J. and Browne, L.W.B., Low Reynolds number effects in a fully developed turbulent channel flow. J. Fluid Mech. 236(1992) 579-605.

    Article  ADS  Google Scholar 

  13. den Toonder, J.M.J. and Nieuwstadt, F.T.M., Reynolds number effects in a turbulent pipe flow for low to moderate Reynolds number. Phys. Fluids 9(1997) 3398-3409.

    Article  ADS  Google Scholar 

  14. Browne, L.W.B. and Dinkelacker, A., Turbulent pipe flow: Pressures and velocities. Fluid Dyn. Res. 15(1995) 177-204.

    Article  Google Scholar 

  15. Kim, J., Moin, P. and Moser, R.D., Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177(1987) 133-166.

    Article  MATH  ADS  Google Scholar 

  16. Perry, A.E. and Abell, C.J., Asymptotic similarity of turbulence structures in smooth-and rough-walled pipes. J. Fluid Mech. 79(1977) 785-799.

    Article  ADS  Google Scholar 

  17. Eggels, J.G.M., Unger, F., Weiss, M.H., Westerweel, J., Adrian, R.J., Friedrich, R. and Nieuwstadt, F.T.M., Fully developed turbulent pipe flow: A comparison between direct numerical simulation and experiment. J. Fluid Mech. 268(1994) 175-209.

    Article  ADS  Google Scholar 

  18. Durst, F., Jovanovic, J. and Sender, J., LDA measurements in the near-wall region of a turbulent pipe flow. J. Fluid Mech. 295(1995) 305-335.

    Article  ADS  Google Scholar 

  19. Fontaine, A.A. and Deutsch, S., Three-component, time-resolved velocity statistics in the wall region of a fully developed turbulent pipe flow. Expts. in Fluids 18(1995) 168-173.

    ADS  Google Scholar 

  20. Zagarola, M.V., Smits, A.J., Orszag, S.A. and Yakhot, V., Experiments in high Reynolds number turbulent pipe flow. AIAA Paper 96-0654 (1996).

  21. Zagarola, M.V., Perry, A.E. and Smits, A.J., Log laws or power laws: the scaling overlap region. Phys. Fluids 9(1997) 2094-2100.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. Zagarola, M.V. and Smits, A.J., Mean-flow scaling of turbulent pipe flow. J. Fluid Mech. 373(1998) 33-79.

    Article  MATH  ADS  Google Scholar 

  23. Pearson, B.R. and Antonia, R.A. Some measurements in fully developed turbulent pipe flow. Report T.N. FM95/1, Department of Mechanical Engineering, University of Newcastle (1995).

  24. Pearson, B.R., Experiments on small-scale turbulence. Ph.D. Thesis, University of Newcastle (1999).

  25. Browne, L.W.B., Antonia, R.A. and Chua, L.K., Velocity vector cone angle in turbulent flows. Expts. in Fluids 8(1989) 13-16.

    Article  ADS  Google Scholar 

  26. Tennekes, H. and Lumley, J.L., A First Course in Turbulence. MIT Press, Cambridge, MA (1972).

    Google Scholar 

  27. Barenblatt, G.I., Scaling laws for fully developed turbulent shear flows. Part 1. Basic hypothesis and analysis. J. Fluid Mech. 248(1993) 513-520.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  28. Barenblatt, G.I. and Prostokishin, V.M., Scaling laws for fully developed turbulent shear flows. Part 2. Processing of experimental data. J. Fluid Mech. 248(1993) 521-529.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  29. Wyngaard, J.C., Measurement of small-scale turbulence structure with hot wires. J. Sci. Instrum. 2(1968) 983-987.

    ADS  Google Scholar 

  30. Zhu, Y. and Antonia, R.A., Effect of wire separation on X-probe measurements in a turbulent flow. J. Fluid Mech. 287(1995) 199-223.

    Article  ADS  Google Scholar 

  31. Martinez, D.O., Chen, S., Doolen, G.K., Kraichnan, R.H., Wang, L.P. and Zhou, Y., Energy spectrum in the dissipation range of fluid turbulence. J. Plasma Phys. 57(1997) 195-201.

    Article  ADS  Google Scholar 

  32. Sreenivasan, K.R., The energy dissipation rate in turbulent shear flows. In: Deshpande, S.M., Prabhu, A., Sreenivasan, K.R. and Viswanath, P.R. (eds), Developments in Fluid Dynamics and Aerospace Engineering. Interline, Bangalore (1995) p. 159.

    Google Scholar 

  33. Sreenivasan, K.R., An update on the energy dissipation rate. Phys. Fluids 10(1998) 528-529.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  34. Torbergsen, L.E., Experiments in turbulent pipe flow. Ph.D. Thesis, Norwegian University of Science and Technology, Trondheim (1998).

    Google Scholar 

  35. Kim, K.C. and Adrian, R.J., Very large-scale motions in the outer layer. Phys. Fluids 11(1999) 417-422.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  36. Kolmogorov, A.N., The local structure of turbulence in an incompressible fluid for very large Reynolds numbers. Dokl. Akad. Nauk. SSSR 30(1941) 301-305.

    MATH  ADS  Google Scholar 

  37. Antonia, R.A., Pearson, B.R. and Zhou, T., Reynolds number dependence of second-order velocity structure functions, Phys. Fluids(1999) (submitted).

  38. Stolovitzky, G., Sreenivasan, K.R. and Juneja, A., Scaling functions and scaling exponents in turbulence. Phys. Rev. E 48(1993) R3217-R3220.

    Article  ADS  Google Scholar 

  39. Stolovitzky, G. and Sreenivasan, K.R., Scaling of structure functions. Phys. Rev. E 48(1993) R33-R36.

    Article  ADS  Google Scholar 

  40. Sirovich, L., Smith, L. and Yakhot, V., Energy spectrum of homogeneous and isotropic turbulence in far dissipation range. Phys. Rev. Lett. 72(1994) 344-347.

    Article  ADS  Google Scholar 

  41. Grossmann, S., Asymptotic dissipation rate in turbulence. Phys. Rev. E 51(1995) 6275-6277.

    Article  MathSciNet  ADS  Google Scholar 

  42. Meneveau, C., Transition between viscous and inertial-range scaling of turbulence structure functions. Phys. Rev. E 51(1996) 3657-3663.

    Article  ADS  Google Scholar 

  43. Kolmogorov, A.N., A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number. J. Fluid Mech. 13(1962) 82-85.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  44. Moisy, F., Tabeling P. and Willaime, H., Kolmogorov equation in a fully developed turbulence experiment. Phys. Rev. Lett. 82(1999) 3994-3997.

    Article  ADS  Google Scholar 

  45. Zhou, T. and Antonia, R.A., Reynolds number dependence of the small scale structures of grid turbulence, J. Fluid Mech.(1999) (submitted).

  46. Kolmogorov, A.N., Energy dissipation in locally isotropic turbuence. Dokl. Akad. Nauk. SSSR 32(1941) 19-21.

    Google Scholar 

  47. Lawn, C.J., The determination of the rate of dissipation in turbulent pipe flow. J. Fluid Mech. 48(1971) 477-505.

    Article  ADS  Google Scholar 

  48. Yaglom, A.M., Laws of small-scale turbulence in atmosphere and ocean. Izv. Atmos. Ocean. Phys. 17(1981) 1235-1257.

    Google Scholar 

  49. Saddoughi, S.G. and Veeravalli, S.V., Local isotropy in turbulent boundary layers at high Reynolds number. J. Fluid Mech. 268(1994) 333-372.

    Article  ADS  Google Scholar 

  50. Antonia, R.A., Orlandi, P. and Romano, G.P., Scaling of longitudinal velocity icnrements in a fully developed turbulent channel flow. Phys. Fluids 10(1998) 3239-3241.

    Article  ADS  Google Scholar 

  51. Amati, G., Succi, S. and Piva, R., Preliminary analysis of the scaling exponents in channel flow turbulence. Fluid Dyn. Res. 24(1999) 201-209.

    Article  Google Scholar 

  52. Antonia, R.A., Zhou, T. and Romano, G.P., Second and third-order longitudinal velocity structure functions in a fully developed turbulent channel flow. Phys. Fluids 9(1997) 3465-3471.

    Article  ADS  Google Scholar 

  53. Elena, M., Suction effects on turbulence statistics in a heated pipe flow. Phys. Fluids 27(1984) 861-866.

    Article  ADS  Google Scholar 

  54. Dinkelacker, A., Baumann, C. and Otto, W., Some remarks on the probability distribution of @u=@tin turbulent flow. In: Fernholz, H.H. and Fiedler, H.E. (eds), Advances in Turbulence 2. Springer-Verlag, Berlin (1989) pp. 32-36.

    Google Scholar 

  55. Comte-Bellot, G., Contribution à l'étude de la turbulence de conduite. P.S.T.Ministere de l'Air No. 419, Paris (1965). [Also Report ARC 31 609, translated by P. Bradshaw, 1969.]

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Antonia, R., Pearson, B. Reynolds Number Dependence of Velocity Structure Functions in a Turbulent Pipe Flow. Flow, Turbulence and Combustion 64, 95–117 (2000). https://doi.org/10.1023/A:1009900120828

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009900120828

Navigation