Skip to main content
Log in

The Role of Leukocytes in Disseminated Intravascular Coagulation Associated with Sepsis

  • Published:
Sepsis

Abstract

Leukocytes play a pivotal role in the pathogenesis of disseminated intravascular coagulation (DIC) and multiple organ failure associated with sepsis. Cytokines such as tumor necrosis factor-a (TNF-α) and interleukin-1β (IL-1β) activate monocytes, neutrophils and endothelial cells. TNF-α increases the expression of tissue factor on surfaces of both monocytes and endothelial cells and decreases the anticoagulant potential of endothelial cells, thereby inducing intravascular coagulation. These cytokines also inhibit the fibrinolytic activity by increasing the endothelial production of plasminogen activator inhibitor-1. These cytokines activate neutrophils to release the various inflammatory mediators such as neutrophil elastase and oxygen free radicals, both of which are capable of damaging endothelial cells. Activated neutrophils damage endothelial cells by adhering to endothelial cells through interaction with E-selectin or ICAM-1, endothelial leukocyte adhesion molecules, expression of which are increased by the actions of these cytokines. Both microthrombus formation and the endothelial cell damage could lead to multiple organ failure by inducing microcirculatory disturbances.

Among physiological anticoagulants, antithrombin, activated protein C and tissue factor pathway inhibitor exert anti-inflammatory activity by inhibiting leukocyte activation. Gabexate mesilate and nafamostat mesilaste, synthetic anticoagulants, also inhibit leukocyte activation. The reduction of both coagulation abnormalities and inflammatory responses by using these therapeutic agents could be useful in the treatment of DIC associated with sepsis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Levi M, ten Cate H, van der Poll T, van Deventer SJH. Pathogenesis of disseminated intravascular coagulation in sepsis. JAMA 1993;270:975–979.

    Google Scholar 

  2. Corrigan JJ, Jordan CM. Heparin therapy in septicemia with disseminated intravascular coagulation. New Engl J Med 1970;283:778–782.

    Google Scholar 

  3. Thomas L, Good RA. Studies on the generalized Shwartzman reaction. I. General observation concerning the phenomenon. J Exp Med 1952;96:605–624.

    Google Scholar 

  4. Okajima K, Wang YP, Okabe H, Inoue M, Takatsuki K. Role of leukocytes in the activation of intravascular coagulation in patients with septicemia. Am J Hematol 1991;36:265–271.

    Google Scholar 

  5. Pober JS, Cotran RS. Cytokines and endothelial cell biology. Physiol Rev 1990;70:427–451.

    Google Scholar 

  6. Stephans KE, Ishizaka A, Wu ZH, Larrick JW, Raffin A. Granulocyte depletion prevents tumor necrosis factor mediated acute lung injury in guinea pigs. Am Rev Respir Dis 1988;138:1300–1307.

    Google Scholar 

  7. Taylor FB, Chang ACK, Peer GT, Mather T, Blick K, Catlett R, Lockhart CMS, Esmon CT. DEGR-factor Xa blocks disseminated intravascular coagulation initiated by Escherichia coli without preventing shock or organ damage. Blood 1991;78:364–368.

    Google Scholar 

  8. UchibaM, Okajima K, Murakami K, Okabe H, Takatsuki K.Endotoxin-induced pulmonary vascular injuryismainlymediated by activated neutrophils in rats.ThrombRes 1995;78:117–125.

    Google Scholar 

  9. Naworth PP, Stern DM. Modulation of endothelial cell hemostatic properties by tumor necrosis factor. J Exp Med 1986;163:740–745.

    Google Scholar 

  10. Moore KL, Esmon CT, Esmon NL. Tumor necrosis factor leads to the internalization and degradation of thrombomodulin from the surface of bovine aortic endothelial cells in culture. Blood 1989;73:159–165.

    Google Scholar 

  11. Kobayashi M, Shimada K, Ozawa T. Human recombinant interleukin-1y and tumor necrosis factor-a-mediated suppression of heparin-like compounds on cultured porcine aortic endothelial cells. J Cell Physiol 1990;144:383–390.

    Google Scholar 

  12. Schleef RR, Bevilacua MP, Sawdey M, Gimborne MA Jr, Loskutoff DJ. Cytokine activation of vascular endothelium. J Biol Chem 1988;263:5797–5803.

    Google Scholar 

  13. Bauer KA, ten Cate H, Barzegar S, Spriggs DR, Sherman ML, Rosenberg RD. Tumor necrosis factor infusions have a procoagulant effect on the hemostatic mechanism of humans. Blood 1989;74:165–172.

    Google Scholar 

  14. Wada H, Tamaki S, Tanigawa M, Takagi M, Mori Y, Deguchi A, Katayama N, Yamamoto T, Deguchi K, Shirakawa S. Plasma level of IL-1b in disseminated intravascular coagulation. Thromb Haemost 1991;65:364–368.

    Google Scholar 

  15. Marks JD, Marks CB, Luce JM, Montogomery AB, Turner J, Metz CA, Murray JF. Plasma tumor necrosis factor in patients with septic shock. Am Rev Respir Dis 1990;141:94–97.

    Google Scholar 

  16. Casey LC, Balk RA, Bone RC. Plasma cytokine and endotoxin levels correlate with survival in patients with the sepsis syndrome. Ann Intern Med 1993;119:771–777.

    Google Scholar 

  17. Newman W, Beal LD, Carson CW, Hunder GG, Graben N, Randhawa ZI, Gopal TV, Wiener-Kronish J, Matthay MA. Soluble E-selectin is found in supernatants of activated endothelial cells and is elevated in the serum of patients with septic shock. J Immunol 1993;150:644–654.

    Google Scholar 

  18. Okajima K, Uchiba M, Murakami K, Okabe H, Takatsuki K. Plasma levels of soluble E-selectin in patients with disseminated intravascular coagulation Am J Hematol 1997;54:219–224.

    Google Scholar 

  19. Adams DO, Hamilton TA. The cell biology of macrophage activation. Annu Rev Immunol 1985;2:283–318.

    Google Scholar 

  20. Van der Poll, Levi M, Hack CE, ten Cate H, van Deventer SJH, Eerenberg AJM, de Groot ER, Jansen J, Gallati H, Büller HR, ten Cate JW, Aarden LA. Elimination of interleukin 6 attenuates coagulation activation in experimental endotoxemia in chimpanzees. J Exp Med 1994;179:1253–1259.

    Google Scholar 

  21. Heremans H, Dillen C, Put W, Van Damme J, Billiau A. Protective effect of anti-interleukin (IL)-6 antibody against endotoxin, associated with paradoxically increased IL-6 levels. Eur J Immunol 1992;22:2395–2401.

    Google Scholar 

  22. Stouthard JML, Levi M, Hack CE, Veenhof CH, Romijn HA, Sauerwein HP, van der Poll T. Interleukin-6 stimulates coagulation, not fibrinolysis, in humans. Thromb Haemost 1996;76:738–742.

    Google Scholar 

  23. Niessen RWL, Lamping RJ, Jansen PM, Prins MH, Peters M, Taylor Jr. FB, de Vijlder JJM, ten Cate JW, Hack CE, Sturk A. Antithrombin acts as a negative acute phase protein as established with studies on HepG2 cells and baboons. Thromb Haemost 1997;78:1088–1092.

    Google Scholar 

  24. Schipper HG, Roos J, van de Meulen F, ten Cate JW. Antithrombin III deficiency in surgical intensive care patients. Thromb Res 1981;21:73–80.

    Google Scholar 

  25. Starkey PM.Elastase and cathepsin G. the serine proteinase of human neutrophil leukocytes and spleen. In: Barret AJ, ed. Protreinase in Mammalian Cells and Tissues. Amsterdam: Elsevier/North-Holland Biomedical Press, 1977:57–59.

    Google Scholar 

  26. Shalaby MR, Aggarwal BB, Rinderknecht E, Svedersky LP, Finkel BS, Palladino MR. Activation of human polymorphonuclear neutrophil functions by interferon-gamma and tumor necrosis factors. J Immunol 1985;135:2069–2073.

    Google Scholar 

  27. Jochum M, Lamber N, Heimburger N, Fritz H. Effect of human granulocyte elastase on isolated human antithrombin III. Hoppe-Seylers Zeitschrift fur Physiologische Chemie 1981;362:103–112.

    Google Scholar 

  28. Abe H, Okajima K, Okabe H, Takatsuki K, Binder BR. Granulocyte proteases and hydrogen peroxide synergistically inactive thrombomodulin of endothelial cells in vitro. J Lab Clin Med 1994;123:874–881.

    Google Scholar 

  29. Slungaard A, Vercellotti GM, Tran T, Gleich GJ, Key NS. Eosinophil cationic granule proteins impair thrombomodulin function. J Clin Invest 1993;91:1721–1730.

    Google Scholar 

  30. Kushimoto S, Okajima K, Okabe H, Binder BR. Role of granulocyte elastase in the formation of hemorrhagic shockinduced gastric mucosal lesions in the rat. Crit Care Med 1996;24:1041–1046.

    Google Scholar 

  31. Tateson JE, Moncada S, Vane JR. Effects of prostacyclin on cyclic AMP concentration in human platelets. Prostaglandins 1977;13:389–397.

    Google Scholar 

  32. Crutchley DJ, Conanan LB, Toledo AW, Solomon DE, Que BG. Effects of prostacyclin analogues on human endothelial cell tissue factor expression. Arterioscl Throm Vas 1993;13:1082–1089.

    Google Scholar 

  33. Kainoh M, Maruyama I, Nishio S, Nakadate T. Enhancement by beraprost sodium, a stable analogue of prostacyclin, in thrombomodulin expression on membrane surface of cultured vascular endothelial cells via increase in cyclic AMP level. Biochem Pharmacol 1991;41:1135–1140.

    Google Scholar 

  34. Yoshikawa T, Murakami M, Furukawa Y, Kondo M. Effects of prostaglandin I2 and thromboxane A2 synthtase inhibitor on endotoxin-induced disseminated intravascular coagulation in rats. J Clin Biochem Nutr 1986;1:31–37.

    Google Scholar 

  35. LeRoy EC, Ager A, Gordon JL. Effects of neutrophil elastase and other proteases on porcine aortic endothelial prostacyclin production, adenine nucleotide release, and responses to vasoactive agents. J Clin Invest 1984;74:1003–1010.

    Google Scholar 

  36. Suttop N, Nolte A, Wilke A, Drenckhaln D. Human neutrophil elastase increases permeability of cultured pulmonary endothelial cell monolayer. Int J Microcirculation 1993;13:187–203.

    Google Scholar 

  37. Okajima K, Fujise R, Motosato Y, Ushijima M, Okabe H, Takatsuki K. Plasma levels of granulocyte elastase-a1–proteinase inhibitor complex in patients with disseminated intravascular coagulation: Pathophysiologic implications. Am J Hematol 1994;47:82–88.

    Google Scholar 

  38. Glaser CB, Morser J, Clarke JH, Blasko E, McLean K, Chang RJ, Lin JH, Vilander L, Andrews WH, Light DR. Oxidation of a specific methionine in thrombomodulin by activated neutrophil productsblocks cofactor activity. J Clin Invest 1992;90:2565–2573.

    Google Scholar 

  39. Shasby DM, Yorec M, Shasby SS. Exogenous oxidants initiates hydrolysis of endothelial cell inositol phospholipids. Blood 1988;72:491–499.

    Google Scholar 

  40. Muller-Berghaus G, Schneberger R. Hageman factor activation in the generalized Shwartzman reaction induced by endotoxin. Br J Haematol 1971;21:513–527.

    Google Scholar 

  41. Carvalho AC, Demarins S, Scott CF, Silver LD, Schmaier AH, Colman RW. Activation of the contact system of plasma proteolysis in the adult respiratory distress syndrome. J Lab Clin Med 1988;112:270–277.

    Google Scholar 

  42. Wachtfogel YT, Kucich U, James HL, Scott CF, Schapira M, Zimmerman M, Cohen AB, Colman RW. Human plasma kallikrein releases neutrophil elastase during blood coagulation. J Clin Invest 1983;72:1672–1677.

    Google Scholar 

  43. Wachtfogel YT, Pixely RA, Kucich U, Abrams W, Weinbaum G, Schapira M, Colman RW. Purified plasma factor XIIa aggregates human neutrophils and causes degranulation. Blood 1986;67:1731–1737.

    Google Scholar 

  44. Pixley RA, De La Cadena R, Page JD, Kaufman N, Wyshock EG, Chang A, Taylor FB Jr, Colman RW. The contact system contributes to hypotension but not disseminated intravascular coagulation in lethal bacteremia. In vivo use of a monoclonal antibody to block contact activation in baboolns. J Clin Invest 1993;91:61–68.

    Google Scholar 

  45. Uchiba M, Okajima K, Murakami K, Okabe H, Okamoto S, Okada T. Effects of plasma kallikrein specific inhibitor and active-site blocked factor VIIa on the pulmonary vascular injury induced by endotoxin in rats. Thromb Haemost 1997;78:1209–1214.

    Google Scholar 

  46. Jansen PM, Pixley RA, Brouwer M, de Jong JW, Chang AC, Hack CE, Taylor FB Jr, Colman RW. Inhibition of factor XII in septic baboons attenuates the activation of complement and fibrinolytic systems and reduces the release of interleukin-6 and neutrophil elastase. Blood 1996;87:2337–2344.

    Google Scholar 

  47. Yamauchi T, Umeda F, Inoguchi T, Nawata H. Antithrombin III stimulates prostacyclin production by cultured aortic endothelial cells. Biochem Biophys Res Commun 1989;163:1404–1411.

    Google Scholar 

  48. Uchiba M, Okajima K, Murakami K, Okabe H, Takatsuki K. Effect of antithrombin III (AT III) and Trp49–modified AT III on plasma levels of 6–keto-PGF1a in rats. Thromb Res 1995;80:201–208.

    Google Scholar 

  49. Eisenhut T, Sinha B, Grottrup-Wolfers E, Semmler J, Siess W, Endres S. Prostacyclin analog suppress the synthesis of tumor necrosis factor in LPS-stimulated human perpheral blood mononuclear cells. Immunopharmacology 1993;26:259–264.

    Google Scholar 

  50. Kainoh M, Iai R, Umetsu T, Hattori M, Nishio S. Prostacyclin and beraprost sodium as seppressors of activated rat polymorphonuclear leukocytes. Biochem Pharmacol 1990;39:477–484.

    Google Scholar 

  51. Uchiba M, Okajima K, Murakami K, Okabe H, Takatsuki K. Attenuation of endotoxin-induced pulmonary vascular injury by antithrombin III. Am J Physiol 1992;270:L921–L930.

    Google Scholar 

  52. Uchiba M, Okajima K, Murakami K. Effects of various doses of antithrombin III on endotoxin-induced endothelial cell injury and coagulation abnormalities in rats. Thromb Res 1998;89:233–241.

    Google Scholar 

  53. Uchiba M, Okajima K. Antithrombin III (AT III) prevents LPS-induced pulmonary vascular injury: Novel biological activity of AT III. Semin Thromb Hemost 1997;23:581–588.

    Google Scholar 

  54. Okajima K, Uchiba M. The anti-inflammatory properties of antithrombin III-New therapeutic implications. Semin Thromb Hemost 1998;24:27–32.

    Google Scholar 

  55. Okajima K. Antithrombin prevents endotoxin-induced pulmonary vascular injury by inhibiting leukocyte activation. Blood Coagul Fibrinol 1998;9(Suppl 2):S25–S37.

    Google Scholar 

  56. Esmon NL, Owen WG, Esmon CT. Isolation of a membranebound cofactor for thrombin-catalyzed activation of protein C. J Biol Chem 1982;257:859–864.

    Google Scholar 

  57. Suzuki K, Stenflo J, Dahlback B, Teodorsson B. Inactivation of human coagulation factor V by activated protein C. J Biol Chem 1993;258:1914–1920.

    Google Scholar 

  58. Murakami K, Okajima K, Uchiba M, Johno M, Nakagaki T, Okabe H, Takatsuki K. Activated protein C prevents LPSinduced pulmonary vascular injury by inhibiting cytokine production. Am J Physiol 1997;272:L197–L202.

    Google Scholar 

  59. Murakami K, Okajima K, Uchiba M, Johno M, Nakagaki T, Okabe H, Takatsuki K. Activated protein C attenuates endotoxin-induced pulmonary vascular injury by inhibiting activated leukocytes in rats. Blood 1996;87:642–647.

    Google Scholar 

  60. Uchiba M, Okajima K, Murakami K, Nawa H, Okabe H, Takatsuki K. Recombinant human soluble thrombomodulin reduces endotoxin-induced pulmonary vascular injury via protein C activation in rats. Thromb Haemostas 1995;74:1265–1270.

    Google Scholar 

  61. Uchiba M, Okajima K, Murakami K, Johno M, Okabe H, Takatsuki K. Recombinant thrombomodulin prevents endotoxin-induced lung injury by inhibiting activation of leukocytes in rats. Am J Physiol 1996;271:L470–L475.

    Google Scholar 

  62. Uchiba M, Okajima K, Murakami K, Johno M, Mohri M, Okabe H, Takatsuki K. Recombinant thrombomodulin prevents the endotoxin-induced increase in pulmonary vascular permeability through protein C activation. Am J Physiol 1997;273:L889–L894.

    Google Scholar 

  63. Girard TJ, Warren LA, Novotony WF, Likert K, Brown SG. Functional significance of the Kunitz-type inhibitory domains of lipoprotein-associated coagulation inhibitor. Nature 1989;338:518–520.

    Google Scholar 

  64. Carr C, Bild GS, Chang AC, Peer GT, Palmier MO, Frazier RB, Gustafson ME, Wun T-C, Creasy AA, Hinshaw LB, Taylor FB Jr, Galluppi GR. Recombinant E-coli-derived tissue factor pathway inhibitor reduces coagulopathic and lethal effects in the baboon gram-negative model of septic shock. Circ Shock 1995;44:126–137.

    Google Scholar 

  65. Taylor FB Jr, Chang ACK, Peer G, Ezban M, Hedner U. Active site inhibited factor VIIa (DEGR VIIa) attenuates the coagulant and interleukin-6 and-8, but not tumor necrosis factor, responses of the baboon to LD 100 Escherichia coli. Blood 1998;91:1609–1615.

    Google Scholar 

  66. Isobe H, Okajima K, Murakami K, Harada N. Antithrombin prevents endotoxin-induced hypotension in rats by inhibiting induction of nitric oxide synthetase. Crit Care Med 1999;27(Suppl):A46.

    Google Scholar 

  67. Harada N, Okajima K, Kushimoto S, Isobe H, Tanaka K. Antithrombin reduces ischemia/reperfusion injury of rat liver by increasing the hepatic level of prostacyclin. Blood 1999;93:157–164.

    Google Scholar 

  68. Fourrier F, Chopin C, Huart JJ, Runge I, Caron C, Goudemand J. Double-blind, placebo-controlled trial of antithrombin III concentrate in septic shock with disseminated intravascular coagulation. Chest 1992;104:882–888.

    Google Scholar 

  69. Jochum M. Influence of high-dose antithrombin concentrate therapy on the release of cellular proteinases, cytokines, and soluble adhesion molecules in acute inflammation. Sem Hematol 1995;32(Suppl 2):19.

    Google Scholar 

  70. Taylor Jr FB, Chang A, Esmon CT, D'Angelo A, Vigano-D, Angelo S, Blick KE. Protein C prevents the coagulopathic and lethal effects of Escherichia coli infusion in the baboon. J Clin Invest 1987;79:918–925.

    Google Scholar 

  71. Okajima K, Imamura H, Koga S, Inoue M, Takatsuki K, Aoki N. Treatment of patients with disseminated intravascular coagulation by protein C. Am J Hematol 1990;33:277–278.

    Google Scholar 

  72. Taenaka N, Shimada Y, Hirata T. Gabexate mesilate (FOY) therapy of disseminated intravascular coagulation due to sepsis. Crit Care Med 1983;9:735–738.

    Google Scholar 

  73. Takahashi H, Takizawa S, Tatewaki W, Nagai K, Wada K, Hamano M, Shibata A. Nafamostat mesilate (FUT-175) in the treatment of patients with disseminated intravascular coagulation. Thromb Haemost 1989;62:372.

    Google Scholar 

  74. Murakami K, Okajima K, Uchiba M, Okabe H, Takatsuki K. Gabexate mesilate, a synthetic protease inhibitor, attenuates endotoxin-induced pulmonary vascular injury by inhibiting tumor necrosis factor production by monocytes. Crit Care Med 1996;24:1047–1053.

    Google Scholar 

  75. Taoka Y, Okajima K, Uchiba M, Murakami K, Kushimoto S, Johno M, Naruo M, Okabe H, Takatsuki K. Gabexate mesilate, a synthetic protease inhibitor, prevents compressioninduced spinal cord injury by inhibiting activation of leukocytes in rats. Crit Care Med 1997;25:874–879.

    Google Scholar 

  76. Harada N, Okajima K, Kushimoto S. Gabexate mesilate, a synthetic protease inhibitor, reduces ischemia/reperfusion injury of rat liver by inhibiting leukocyte activation. Crit Care Med 1999;27:1958–1964.

    Google Scholar 

  77. Uchiba M, Okajima K, Abe H, Okabe H, Takatsuki K. Effect of nafamostat mesilate on the activity of extrinsic pathway of coagulation. Thromb Res 1994;74:155–161.

    Google Scholar 

  78. Okajima K, Uchiba M, Murakami K. Nafamostat mesilate. Cardiovasc Drug Rev 1995;13:51–65.

    Google Scholar 

  79. Uchiba M, Okajima K, Murakami K, Okabe H, Takatsuki K. Effect of nafamostat mesilate on pulmonary vascular injury induced by lipopolysaccharide in rats. Am J Resp Crit Care Med 1997;155:711–718.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okajima, K. The Role of Leukocytes in Disseminated Intravascular Coagulation Associated with Sepsis. Sepsis 3, 135–142 (1999). https://doi.org/10.1023/A:1009899400421

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009899400421

Keywords

Navigation